

Robotics
Operating
System

Decoding

(ROS) and
making it
fail-safe

by Shanmugasundaram. M

Robotics, the interdisciplinary branch of Engineering and

Science strongly backed by mechanical, electronics and

computing technologies, is already known for its “smartness”.

In 2015, Gartner had predicted that by the year 2025, software,

robots and other smart machines would take over one in three

jobs currently performed by humans. However, until recently,

traditional robots were programmed only for deterministic

environments and were deployed in highly predictable

environments where they were not challenged enough with

surprises. Robot manufacturers designed and built robots with

their own proprietary operating and programming systems.

These systems could not be leveraged by other robot manu-

facturers due to proprietary communication and allied

systems that lacked transparency.

Fortunately, with time, hardware became less expensive and

processing power became a�ordable and ubiquitous. Digital

minds began pondering over the idea of developing “intelli-

gent” robots—autonomous robots that could learn by them-

selves and act without human intervention. Smart robots

would be ones that could take advantage of artificial intelli-

gence (AI), building capabilities by learning from their

environment and their own experience. They would be able to

collaborate with humans, working them and learning from

their behavior. Was it an achievable goal, and if yes, how easy

would the journey be?

To accomplish such an autonomous scenario, it was important

for people from disparate backgrounds (such as artificial

intelligence, electronics, distributed computing and communi-

cation technologies) to work together. Secondly, a common

platform that was compatible with di�erent robots was

required, and an ideal scenario would be one where this

platform was open source. But, was such a robotic platform

available? Yes, and Robotic Operating System (ROS) provided

the answer.

Introduction

A traditional operating system runs a computer, controlling the various

applications and resources running on it. Operating systems facilitate the

completion of di�erent actions—sending a message, opening a file, etc.

Hence, it would be misleading to refer to ROS as an operating system. If

we apply the analogy of traditional operating systems to ROS, an ROS

provides certain services or a set of libraries and tools which any robotic

application can utilize to fulfil a set of requirements. It is in fact a meta

operating system that operates on top of a traditional operating system,

usually Ubuntu.

Ever since its development, ROS has been running on Ubuntu, and hence,

it is considered the o�cial operating system of ROS. However, there have

been various instances of successful deployment of ROS in other operat-

ing systems such as Arch Linux, albeit through container systems. An

interesting development in the area has been initiated by Microsoft where

it has started porting ROS onto Windows, calling it ROS 1.

A Robotic Operating
System that is not
an operating system!

ROS is a
pub-sub-based
framework with all
communication
taking place
through messages
as topics.

Nodes are created
based on specific
needs and these
nodes talk to ROS
Core (the central
router) appropriately.

So, what is ROS made of?
At the basic level, ROS is a framework with publish and

subscribe mechanisms at its heart. ROS integrates

many other libraries and frameworks into it and this

alleviates the need to install separate libraries. As an

example OpenCV, which is a separate image process-

ing library, is bundled with ROS. This is a convenient

option for developers as they can use OpenCV directly

within ROS without worrying about unforeseen depen-

dencies. Image processing is such an integral require-

ment for robotics that the bundling of OpenCV with

ROS o�ers obvious benefits.

ROS is a pub-sub-based framework with all communi-

cation taking place through messages as topics. Nodes

are created based on specific needs and these nodes

talk to ROS Core (the central router) appropriately. The

remaining nodes are referred to as ROS nodes. The key

functionality of ROS Core is to handle messages from

all nodes connected to it and to pass on these messag-

es to other nodes based on subscription of specific

nodes to specific topic/s.

At the basic level, ROS is a framework with publish and subscribe mechanisms at its heart.

ROS integrates many other libraries and frameworks into it and this alleviates the need to

install separate libraries. As an example, OpenCV which is a separate image processing

library is bundled with ROS. This is a convenient option for developers as they can use

OpenCV directly within ROS without worrying about unforeseen dependencies. Image

processing is such an integral requirement for robotics that the bundling of OpenCV with

ROS o�ers obvious benefits.

Distributed computing in ROS

The inherent distributed architecture of ROS makes it a

powerful framework for robotics. In most cases, the robot

might not have a powerful in-built computer, and it may

not be possible to run some computing-intensive applica-

tions (image processing, image recognition, neural

networks, etc.) on the robot itself due to high computing

and power expense. Fortunately, this challenge can be

addressed with distributed computing where some other

computing entity does the hard work.

Another challenge that the distributed architecture poses

revolves around seamless communication and data integ-

rity. However, ROS o�ers a solution here as well by allow-

ing ROS nodes to run in a di�erent physical computer.

This enables hard computational tasks to be shifted to

nodes in powerful computers from the robot. The robot

does what it can do best and the rest is completed in the

Cloud. All tasks are fulfilled inside the ROS framework. All

ROS nodes in the local network communicate with each

other based on topics, and hence, computations are

bound to be seamless irrespective of the location where

the nodes run—in the computers inside the robot, or

physically outside the robot. The only caveat here is that

all machines need to be in the same local network.

 ROS o�ers a solution here as well
by allowing ROS nodes to run in a
di�erent physical computer.

Robots cannot fail just like that, and by its

inherent nature, robotics needs to be

fail-safe. But, is ROS really fail-safe, and if

the answer is “no”, what can we do to make

it fail-safe? ROS is a set of tools that makes

robotics successful, and these tools also

work to make the mechanisms fail-safe. It is

important to carefully monitor ROS Core,

the central master for coordinating commu-

nication with other nodes, for any failure.

This can be done via a reporting node

connected to ROS Core and sending/receiv-

ing sample monitoring messages to verify

and ensure that ROS Core is running

successfully. ROS nodes will connect to ROS

Core when they begin functioning, and

hence, it is important for ROS Core to start

running before any ROS nodes are started.

If ROS Core fails in a running system, then

the ROS nodes which were connected to

ROS Core will not try to re-establish the

connection even after restarting ROS Core.

Hence, it is important to monitor the whole

system to ensure ROS Core is up and

running. Each node has to have a strong

mechanism to gracefully restart the connec-

tion if ROS Core fails. If a node fails to con-

nect, an in-built mechanism should be able

to restart the nodes to make the entire

system fail-safe. As a rule, it is imperative to

manage the ROS in an intelligent manner to

bring the system back from failure.

ROS is a set of tools that
makes robotics successful,
and these tools also work
to make the mechanisms
fail-safe.

Is ROS fail-safe?

Another interesting graphical tool is the

rqt_graph which displays all nodes in a

graphical format along with topics and

publisher-subscriber relationships.

Finally, any node can be killed with Ctrl-C or

“rosnode kill nodename”.

CATKIN

RO
SN

O
D

E LIST

RQ
T_G

RA
PH

Useful tools within ROS
Here, we discuss commonly used tools in ROS

that make lives of developers a lot easier. Out

of the many readily available tools that make

application development quick and easy,

“Catkin”, a compilation tool, is quite popular.

Though makefiles help streamline the compil-

ing process, they are usually complicated and

most developers consider them a chore.

Catkin goes a step further and makes make-

files friendlier and approachable. The compil-

ing process takes care of all the dependencies

and installs without any complication.

There are other command line tools and

graphical tools that enable developers and

users to monitor the system easily. The com-

mand “rosnode list” is worth a mention due to

its resourcefulness. For a node to be inspect-

ed, the command “rosnode info nodename”

has to be used. The command lists topics that

the node is subscribed to. It also lists topics it

publishes and the services it o�ers.

Conclusion
By its very architecture, ROS is distributed and

modular making it suitable for the robotics

arena. It is also one of the most popular

open-source robotics frameworks available

today supported by an always-ready-to-help

community. Interestingly, new packages are

constantly being added to ROS, making it more

convenient and useful than ever before. To top

all, with major robotics as well as non-robotics

companies embracing ROS, and adopting ROS

into any kind of robotics work-either academic

or commercial-it is likely to create a win-win

situation for everyone involved.

Shanmugasundaram. M (Shan) is a prolific inventor and creator of several

products. He owns 14 patents in the areas of telecom, automotive (OBD II,

J1939 etc.), Machine to Machine (M2M), etc. Shan possesses 16 years of IT

industry experience in R&D (telecom, automotive, M2M, etc.), filing patents,

inventions, converting inventions into successful products, customer proj-

ects and maintenance projects.

An accomplished master and successful implementer in M2M technologies,

Shan has proven himself time and again in creating and deploying

real-world cutting-edge M2M products such as Logica EMO, Static Asset

Monitoring and Retail Innovations.

These inventions have won him numerous awards, including Golden Pea-

cock Award, a NASSCOM award and The Economist award. The inven-

tions also provided Logica with the much-needed global exposure in

di�erent domains, including automotive technologies.

Shan and his inventions have been covered in leading national and interna-

tional publications, including Times of India (http://bit.ly/ROS43M), Hindu-

stan Times, The Economist (http://bloom.bg/Uvg74g), Electronics for You,

and The Livemint (http://bit.ly/VHsW02).

An accomplished
master and successful
implementer in M2M
technologies, Shan has
proven himself time
and again in creating
and deploying
real-world
cutting-edge M2M
products such as
Logica EMO, Static
Asset Monitoring and
Retail Innovations.

About the Author:

