
01001

01001

01001

01001

01001

0101010101010101010101010 1111111111 101010101010101001

01001

01001

01001

01001

01001

01001
Happiest People . Happiest Customers

Leveraging Simplified Anomaly Detection
Solutions for Increased Analytics Insights

”

01001

01001

01001

01001

01001

0101010101010101010101010 1111111111 101010101010101001

01001

01001

01001

01001

01001

01001

Contents

© Happiest Minds Technologies Pvt. Ltd. All Rights Reserved2

Abstract... 3

Introduction.. 3

High Level Overall Architecture Diagram.. 4

API Server.. 4

Ingestion Engine... 4

Metadata Store... 5

Analytics and Distributed Data Handling Core... 5

Data Store.. 6

Data Aggregators... 6

Messaging Layer.. 6

ML System.. 7

Query Engine and Spark Layer.. 7

Data Transformation Layer & Processed Data.. 7

ML Worker Nodes.. 8

Generated Model and CMI (Common Model Interface).. 8

API, SDK, and Workers... 8

Architectural Choices... 9

About the Author.. 10

Abstract

In this paper, we present our home grown solution on Anomaly Detection along with its architecture. We will discuss the

features and capabilities of the existing platform and project our future plans for it as well.

Anomaly detection (or outlier detection) is a process of the identifying items, events or observations which do not conform

to an expected pattern of data in a dataset. Generally, the data in a given data pool is related/correlated with each other in

a certain fashion- known as data patterns. Anomaly Detection is about finding out deviations from these patterns by using

various statistical and machine learning algorithms. Typically the anomalous items will translate to some kind of problems

such as bank fraud or a structural defect, medical problems or errors in a text. Anomalies are also referred to as outliers,

novelties, noise, deviations and exceptions.

Detecting an outlier needs a rich domain expertise and the entire process is entirely dependent on a variety of data. Auto-

mating Anomaly Detection would mean attaining the power to dealing with any variety of data, running it against any algo-

rithms and judging the efficiency of each algorithm.

This is intended to empower the domain experts with an automated engine to play with.

In this tool, we have made the work easy for Business analyst to simply use our tool and find out anomalies without the

requirement of any dedicated Data Science or Big-data engineer.

Our solution not only covers all of above-said flexibility but also scalable for any new algorithm to be added to the frame-

work. The best part it’s a feedback based system which facilitates analyzing and making decisions based on your algorithms

performance on a given data set.

© Happiest Minds Technologies Pvt. Ltd. All Rights Reserved3

Introduction

http://www.happiestminds.com/services/data-science/

© Happiest Minds Technologies Pvt. Ltd. All Rights Reserved4

High Level Overall Architecture Diagram

API Server

The API server is the major interface between the user and the other components in the system. Details on the design:

• API layer is designed to facilitate the simple and quick transition between changing the rest layer from one framework to

the other, without much code change.

• API server can run using any of the two frameworks being Undertow.io and Spray.io. These options can be configured

from the configuration file.

• Task segregation and execution strategy facilitates Fast Response time

The API Server is also the initiator of all jobs and tasks. These are maintained and coordinated by a central system

making sure that all tasks are run and executed properly. This also works as a fail-safe mechanism.

The ingestion Engine has one primary task accept the data sent from the client system, process the request, check for

common validations and forward the data to the messaging system. Same can be processed later by consumers in a

Batch mode.

There are two ingestion Engines in place:

• First ingestion engine is directly integrated into the API server itself which reads the requests and directly loads the data

into the data store without using Kafka queue to distribute the task. This is capable of handling small payloads from about

10 to 15 thousand updates per second.

• The Second one is the dedicated ingestion engine built using the in-house HTTP-server Vega-HTTP, which can handle

a very large number of requests and push the data back to a Kafka cluster without any delay or failover in the system.

The ingestion engine can process data and send the requests out with minimal CPU usage and performance lag. This

system is used for extremely large data systems which would push data scaling from 100000 requests to 170000

requests per second for a basic 2 core server.

Ingestion Engine

http://www.happiestminds.com/wp-content/uploads/2016/05/Vega-HTTP-The-High-performance-web-server.pdf

© Happiest Minds Technologies Pvt. Ltd. All Rights Reserved5

Analytics and Distributed Data Handling Core

Metadata Store

System comprises of two main components

• The analytics core has SQL wrapper on top of NOSQL at its epicenter. It powers the UI reports and all other key

KPI. It supports parallel query run and has caching features enabling a faster delivery of information near

real-time.

Query Engine : The Query engine is a query interface on top of NOSQL for the API server or other systems. The Query

engine has inbuilt functions to parallelize querying for optimal speed. It also enables users to dynamically fetch records

that are required by them for Analysis. The Query Engine also performs Statistical calculations if required by the API

server. The Query has an aggregation layer for reducing run-time calculation time. This layer in the system makes it well

suited for advanced analytics in a distributed manner without loss in performance. The Query Engine is not directly availa

ble to the user but he can use it via the API-Server for viewing reports or for other functions.

The solution is metadata based and all our metadata is stored currently. The Metadata Store contains all the information

for data in a given data pool. All the data structures, jobs, statuses, etc. These metadata definitions are required by all the

component in the system. The Metadata Store is not tightly coupled with the database which means we use no joins or

any other form of relationships in the table thus making migrations to an NOSQL database easier.

Centralized service management system is also an integral metadata for us where we store information on which servers

are live showing what are they doing, etc.

With respect to the CAP theorem of all distributed systems, our architecture prefers Availability and Partition Tolerance

over Consistency. Therefore, a pull based Mechanism for updating cache and a common Cache Consistency Server

ensures that every other component knows that there have been updates in the system.

Query
Engine

SPARK

No sequel

Data
Update
System

API
Layer

 ML
System

Workers
Nodes

We have a basic need to ingest a variety of data from various domain. Hence, the data store should be capable of handling

multiple schemas. The main data store is currently a Columunar NoSQL with a SQL wrapper which is distributed , support

high performance and is reliability. This also supports secondary indexes. SQL-like queries and statistical functions and even

UDT (User Defined Functions).

We have a basic need to ingest a variety of data from various domain. Hence, the data store should be capable of handling

multiple schemas. The main data store is currently a Columunar NoSQL with a SQL wrapper which is distributed , support

high performance and is reliability. This also supports secondary indexes. SQL-like queries and statistical functions and even

UDT (User Defined Functions).

The messaging layer or the transport layer is responsible for load balancing the incoming data to the system. The messaging

layer comprises of apache Kafka. Messages are pushed into topics with multiple partition queues thus making it possible to

consume the data in a highly distributed manner. The multiple producers and multiple consumer models is effective in balanc-

ing load and peak surges in traffic without causing any resultant issues in the system.

© Happiest Minds Technologies Pvt. Ltd. All Rights Reserved6

Data Store

Data Aggregators

Messaging Layer

○ The ML-System is used to train the data and generate models for prediction or score calculation (elaborated in a

section below). The generated CMI (Common Model Interface) model is used to compute the scores on available data

sets. We use spark for parallelizing all data operations from fetching, aggregating to running it against the new model

and the resultant output. The Worker Nodes are distributed independent nodes that take the tasks available and

processes them. They are also responsible for initiating the Spark job and computing the scores respectively.

• The ML-System is used to train the data and generate models for prediction or score calculation (elaborated

in a section below). The generated CMI (Common Model Interface) model is used to compute the

scores on available data sets. We use spark for parallelizing all data operations from fetching, aggregat

ing to running it against the new model and the resultant output. The Worker Nodes are distributed inde

pendent nodes that take the tasks available and processes them. They are also responsible for initiating

the Spark job and computing the scores respectively.

Spark for Distributed Data Handling and Transformation layer. The Distributed Data handling used for these tasks:

○ • Data transformation for preprocessing as per the algorithm’s requirements.

○ • Passing the data to the respective worker node to train the data and to generate the model.

○ • Data transformation for algorithm score computations: the Data Update System is used to update the Data

in the Data Store. It generally updates the tables when new records are inserted it also updates the scores

if a generated model is available for processing. If a generated model is available for processing it checks

if the model is real-time scoring capable, if so it also computes the new record against the model and updates

the score along with the new record.

This makes the Values available for reporting near real-time.

129

The ML System generates machine learning models. These models are in turn consumed by API’s to predict or calculate if

a given record is an anomaly or not.

The well-defined UI allows to play with parameters for each of Algorithms. The ML System also is distributed in nature that

enables various features and the ability to add custom algorithms. These can be tried and tested on the fly against your

data set.

Query Engine is mainly used to query statistical values that are required for certain algorithms to work. This is using the exist-
ing functions available in Phoenix and can also be extended by writing custom UDF (User Defined Functions) over Phoenix.

Apache Spark is exclusively used for Transformation. Any training done across the training system like VW (Vowpal Wabbit)
or scikit-learn is done on transformed data passed back by Spark.

The Data Transformation layer makes common libraries and functions available to the data specialist that is to set the Trans-

formation steps. Scalper Function has accessibility to all the data and custom functions, hence allows you to scale or normal-

ize your data based on your requirements. Supported scaling methods are z-score, Min-Max normalization. For other meth-

ods, the required data can be made available using the Query Engine even before entering the Transformation layer.

It is not required to use the DTL Layer for every Algorithm. If the Algorithm purely depends on other factors like statistical

function. An example of such would be our HBOS (Histogram Based Outlier Scoring) implementation where all the calls for

building the model are done directly using the query engine.

The processed Data can be made available either as Flat files either in local storage or in HDFS for the respective worker.

The worker can then pick up the data and Train the model from there onwards.

For any Anomaly detection solution Nearest neighbors selection process is must . We have developed Multilevel unique

Hashing algorithms to deal with categorical and numerical data in order to find out nearest neighbors

ML System

Query Engine and Spark Layer

Data Transformation Layer & Processed Data

ML System Architecture Diagram

© Happiest Minds Technologies Pvt. Ltd. All Rights Reserved7

SPARK
MLLIB Workers

SPARK SPARK

Processed
Data

VM Workers

Scikit Workers

R Workers

SCK

ML Workers

Statistical
Query
Engine D

ata
Tran

sfo
rm

atio
n

layers

G
en

erated

M
o

d
els

CMI
Common

Model
Interface

API

Workers

No sequel

The ML worker nodes are independent systems that help us train and prepare models independently. Implementing this will

enable us to have our own library which further enables users to write custom algorithms on Scala using our in-house

Machine Learning Engine.

We have used right combination of density based , ML based and AI algorithms to analyze the compute outliers. The workers

that are being built are using Spark MLLIB. The worker node has mainly two tasks; use the prepared data to train the users

custom or existing algorithm and generate the model that has to then be converted to a CMI (Common Model Interface)

which can be used by other systems to calculate and compute the scores based on its output

The Generated model from any Language or System doesn’t have to follow any pattern. It can be different for different

languages and even for algorithms. While preparing the Algorithm it is also required to write the transformation steps from

the generated model to the CMI.

CMI (Common Model Interface) is a simple Interface with two functions Initialize () and Predict (). Where Initialize () is used

to prepare or set up the model and the Predict () function is used to predict the values for the given record. The CMI is going

to be used across all the systems, therefore, it is required that it does not have any dependencies on third party libraries.

Example: Let us consider a simple two-dimensional linear regression.

Y'i = b0 + b1X1i + b2X2i

If the model generated by Spark MLlib has to be reverse engineered to fit the equation for the given set of input parameters

the same output generated by the spark model will also be generated by the CMI model.

All the other components use the generated CMI model to predict and reuse the model for prediction instead of recreating or

running the algorithms against the native library for prediction. This makes it easier for Distributing and reusing it in various

environments for quicker predictions. Algorithms that cannot be reused in this manner like the ones depending on other data

like its neighbors or relative requirements are not built using the CMI. Because it cannot be run outside the system as they

are not accessible to other devices.

Since CMI is serializable, it can be easily distributed and used for parallel computation like in the worker mode while re-com-

puting scores. The worker nodes parallelize the task, computes scores for all the systems simultaneously

129 © Happiest Minds Technologies Pvt. Ltd. All Rights Reserved8

ML Worker Nodes

Generated Model and CMI (Common Model Interface)

API, SDK, and Workers

This is a Big Data solution using NoSQl , SQL wrappers , real time transformations ND streaming analytics for apt phases of

the solutions to facilitate

• Random and consistent Reads/Writes access in high volume request

• Atomic and strongly consistent row-level operations

• Auto failover and reliability

• Flexible, column-based multidimensional map structure

• Variable Schema: columns can be added and removed dynamically

• Integration with Java client, Thrift and REST APIs

• Auto Partitioning and Sharding

• Low latency access to data

• In-memory caching via block cache and bloom filters for query optimization

• No sequel allows data compression and is ideal for sparse data

• Aggregation Enhancements

On initial performance comparison with other SQL layers like Hive and Pig, we came to the conclusion that not only is

No sequel faster but also has the required features we were looking for in terms of statistical functions, UDF’s and the ability

to have custom Hash Functions for indexes.

Architectural Choices

129 © Happiest Minds Technologies Pvt. Ltd. All Rights Reserved9

http://www.happiestminds.com/services/big-data/

129 © Happiest Minds Technologies Pvt. Ltd. All Rights Reserved

About the Author

Happiest Minds

Bhawna is a Big Data Architect at Happiest Minds. She has 11 + years experience in conceptualizing,

building large/complex end to end solutions and implementations. This includes Modeling & designing

Enterprise Application, Solution Architecture , building Enterprise Data Hubs/Data Lake and creating

Strategic value through Business Intelligence and Data Analytics.

10

Happiest Minds. All Rights Reserved.
Business Contact: Business@happiestminds.com
Visit us: www.happiestminds.com

Follow us on

This Document is an exclusive property of Happiest Minds Technologies Pvt. Ltd

Bhawna Manchanda

Happiest Minds, the Mindful IT Company, applies agile methodologies to enable digital transformation for enterprises
and technology providers by delivering seamless customer experience, business efficiency and actionable insights. We
leverage a spectrum of disruptive technologies such as: Big Data Analytics, AI & Cognitive Computing, Internet of
Things, Cloud, Security, SDN-NFV, RPA, Blockchain, etc. Positioned as “Born Digital . Born Agile”, our capabilities
spans across product engineering, digital business solutions, infrastructure management and security services. We deliver
these services across industry sectors such as retail, consumer packaged goods, edutech, e-commerce, banking,
insurance, hi-tech, engineering R&D, manufacturing, automotive and travel/transportation/hospitality.

Headquartered in Bangalore, India; Happiest Minds has operations in USA, UK, The Netherlands, Australia and Middle East.

http://www.happiestminds.com/services/bi-visualization/
https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/big-data/
https://www.happiestminds.com/services/blockchain-solutions-services/
https://www.happiestminds.com/services/it-security-services/
mailto:business@happiestminds.com
https://www.happiestminds.com/

