
Mixed Language Acceleration
Using FPGA

© Happiest Minds Technologies. All Rights Reserved

Sivarama Krishnan R, Module Lead, PES HW

Abstract

© Happiest Minds Technologies. All Rights Reserved

The fundamental question is, what does an FPGA offer in Heterogeneous computing?
OpenCLTM based on the published Khronos Group Specification is the first open programming
standard for cross-platform computing. Lately, FPGA vendors have developed
tool chains supporting OpenCL compilers, adding another platform to the fore. The ability to
perform compute intensive tasks in parallel using both HDL and OpenCL gives the FPGA
platform an edge over the -CPU counterpart, in providing a coherent business solution.

FPGA as a GPGPU
For a while, GPGPU has been able to offload process intensive tasks to the GPU, rather than
relying on the CPU to do everything. OpenCL has provided an open and uniform programming
environment for accelerated processing using the combined power of CPU and GPU under a
single platform. With FPGA coming into the foreground, just not certain tasks but most tasks
can be offloaded to the configurable FPGA platform. The versatility of HDL as a low-level
language combined with a high-level language such as OpenCL can be used to design custom
functions that are both timing-driven as well as area accurate.

Vendor Advantage
Xilinx with SDAccelTM (Figure 1) and Intel FPGA with AOCLTM have developed mature
toolchains to process OpenCL codes for FPGA platforms. FPGA can act as standalone
accelerating system either with inbulit SOC (ARM or Xeon) or a soft core processor system.
This significantly enables higher performance at a much lower power than using other
technologies.

Introduction

Fig. 1: Xilinx SDAccel, [Image obtained from https://www.xilinx.com/products/design-tools/softwarezone/
sdaccel.html in October 2017]

SDAccel- CPU/GPU Development Experience on FPGAs

Compiler Debugger

X-86- Based Server FPGA- Based Accelerator BoardsPCIe

OpenCL, C, C++, Application Code

Profiler Libraries

The OpenCL potential

Applications

A platform-neutral language such as OpenCL enables coders to write generic code that can
easily port to execute on different devices, cloud-based systems, and remote computing
platforms. Whereas, non generic software developed for trade marked platform may or may
not work with other vendors.

The OpenCL framework has been evolving over the years, the latest version being OpenCL 2.2 (Figure 2 shows
the OpenCL timeline). We can notice that the number of platforms has also grown along with the revisions,
thereby numerous pre-defined libraries have been introduced engaging a whole set of applications. Now, the
idea is to make RTL engineers and software developers work together generating another set of libraries that
could yield better results than just depending on the compiler. Dr. Randy Huang, FPGA Architect, Intel
Programmable Solutions Group quotes, “FPGAs are powerful because they are adaptable and make it easy to
implement changes by reusing an existing chip which lets a team go from an idea to prototype in 6 months
versus 18 months to build an ASIC.”

MachineLearning
The data analytics industry is driven by Machine Learning algorithms. There has been an exponential
growth of digital data propelling the need for analytics to yield the data meaningful. The classification
of this data can be achieved effectively either by using CNN or DNN (both Intel FPGA and Xilinx have
benchmarked their performances using image classification as an example) implementation of FPGA
based OpenCL framework. Currently, FPGA implementations may not race ahead of GPU implementations,
but as per the industry news, with evolving technology, the former might get close enough to GPU.

© Happiest Minds Technologies. All Rights Reserved

Fig. 2: OpenCL Timeline , [© Khronos Group 2015, Page 9]

Data Center
Microsoft and Amazon have already gotten a head start, by stating that FPGA boards are being used for
their cloud based services. Data from local search engines and web servers are being used for consumer
specialized suggestions and ads. Moreover, storage being offered through cloud gives an opportunity
for compression and encryption engine implementations offloaded to FPGAs. On the communication
platform, FPGA can be used to create configurable switches, anomaly detection, and virtual packet
processing applications.

As discussed, OpenCL provides an abstracted software flow which does not require any knowledge about the
underlying hardware. This, in turn, accelerates time-to-market scenario. But, what if we could create custom
HDL libraries and link them to the OpenCL framework? The Intel FPGA SDK for OpenCL supports both RTL &
OpenCL based libraries and, the typical tool flow is depicted in Figure 3. The mixed language model proposes a
balanced approach for acceleration where a certain part of the OpenCL code may be implemented using RTL
based functions. This gives developers options to create custom accelerator functions that run on Intel FPGAs.
An ADC data processing system based case study is discussed in the sections to follow. Readers are requested
to go through the AOCL programming guide [2] for full details.

© Happiest Minds Technologies. All Rights Reserved

The Mixed Language Model

Fig. 3: Intel FPGA Library Flow, [Image obtained from aocl programming guide [2] in October 2017

An OpenCL library
An OpenCL library is a file that may contain multiple functions. Each function shall comprise of data
processing logic that may work at any clock frequency. You can create an OpenCL library either in
OpenCL or RTL or both. This library file shall be included along with the kernel/s file for hardware
generation using the prescribed vendor tool. A library function can be called like any other normal
C function inside yourOpenCL kernels.

The advantages of using RTL as a function are given below:
• Timing optimized, area-constrained and verified RTL.
• Implementation of OpenCL kernel functionality that you cannot express effectively in OpenCL

ADC data processing system as a case study
Let us consider a PCIe based real-time data acquisition and processing card with an FPGA as a
co-processor available to the CPU. The processor shall handle the movement and plotting of data and,
the FPGA shall handle the actual data processing. This is a candidate for an OpenCL framework since the
CPU can offload the heavier tasks to FPGA while it handles the reception and analysis of data using a
User Interface. An FIR filter is one of the main components in a data processing chain. implementation is
shown in figure 4. Writing an FIR filter OpenCL kernel might be a considerable effort, hence, RTL
engineers can use the already available IP from the vendor, which can be easily simulated and verified

OpenCL

OpenCL Library

OpenCL Kernel

Offline Compiler
Executable File (.aocx)

Verilog

VHDL

Intel FPGA SDK for
OpenCL Offline Compiler

© Happiest Minds Technologies. All Rights Reserved

Fig. 4: FIR Filter, [Image obtained from FIR filter user guide [3] in October 2017]

An FIR filter Kernel is shown in Figure 5, with the RTL unction - FIRFilter(). The kernel FilterKernel accepts
an integer data ADCIn and produces a floating point output FilterOut. The RTL function is responsible for
the filtering of data and, the OpenCL code shall be a wrapper handling memory access of data. As we all
know, OpenCL kernels are synthesized into a pipelined architecture by the AOCL tool [2]. This architecture
yields a fixed latency but constant throughput every clock cycle. On the other hand, the specifics of an
RTL function is unknown to the AOCL tool since it is just a black box. Hence, the question that remains is
that, how does an RTL function satisfy the above criterion of latency and, how do we fit the module in the
pipeline?

Basically, there are three features which an RTL module should quantify so that it could be included as a
function and they are given below:

RTL function in the OpenCL pipelined architecture

Fig. 5: FIR Filter Kernel

Basic FIR Filter with Weighted Tapped Delay Line

xin
Z-1 Z-1 Z-1 Z-1 Tapped

Delay L

Coeefficient
Multipled

Coefficient
Banks

C01

C02

C11

C12

C21

C22

C31

C32

Adder Tree

yout

� • The module shall be able to work with the kernel clock.
� • The module shall have handshake signals which generate the variable latency for the

 OpenCL kernel.
� • If the module has a fixed latency, handshake signals are not required.

The global ID (gid) is accessed in the zeroth clock cycle and correspondingly the data is accessed in the
next. Now, with a function latency of 4 cycles, the AOCL tool applies an additional 4 clocks pipeline to the
global ID to satisfy the RTL function latency as per the XML description of the module. Hence, with a fixed
latency we shall be able to achieve the required through put after an initial delay.

As seen above, RTL module can be placed in an OpenCL pipeline but, there are restrictions and
constraints that need to be followed for a successful integration. A step by step description is available in
the AOCL programming guide [2]. Also, the RTL should be verified separately before the integration.If the
above steps are followed precisely we would achieve a robust system.

There has been a constant debate on when to use an accelerator or how much of an acceleration is
necessary. FPGA as an accelerator has grown from a novice device to a major player in recent times and
the convergence of platforms might be the norm for the future. The discussion in this paper hasa tradeoff
with respect to the portability of the OpenCL code, since it uses custom low-level RTL code as functions
but, this will definitely yield better results in an FPGA driven acceleration environment.

© Happiest Minds Technologies. All Rights Reserved

These features shall then be included as a part of the module description in an XML file [2]. A
balanced latency allows the threads of the RTL module to execute without stalling the pipeline.
Suppose the filter module has a fixed latency of 4 cycles, the OpenCL synthesized structure
shall look like Figure 6.

Fig. 6: OpenCL pipeline structure, A representive structure that could be produced by Intel FPGA AOCL tool

RTL component in an OpenCL library

Conclusion

References

• FirePro OpenCL Whitepaper.pdf
• AOCL programming guide.pdf
• FIR filter user guide

Load ADCIn
(1st cycle)

FIRFILTER
RTL module

 (4 cycles)

Store
filterOut

(6th cycle)

gid
(0th cycle)

gid

gid

gid

gid

gid

Author

© Happiest Minds Technologies. All Rights Reserved

Sivarama Krishnan R is an FPGA engineer, with several complex
FPGA designs to his credit. He has several years of experience in
FPGA Technology, RTL design, Verification and Validation. He holds
a Bachelor’s degree in Electronics and Communication Engineering
from VTU, Karnataka.

About Happiest Minds Technologies:

Happiest Minds, the Mindful IT Company, applies agile methodologies to enable digital transformation for
enterprises and technology providers by delivering seamless customer experience, business efficiency and
actionable insights. We leverage a spectrum of disruptive technologies such as: Big Data Analytics, AI &
Cognitive Computing, Internet of Things, Cloud, Security, SDN-NFV, RPA, Blockchain, etc. Positioned as
“Born Digital . Born Agile”, our capabilities spans across product engineering, digital business solutions,
infrastructure management and security services. We deliver these services across industry sectors such as
retail, consumer packaged goods, edutech, e-commerce, banking, insurance, hi-tech, engineering R&D,
manufacturing, automotive and travel/transportation/hospitality.

Headquartered in Bangalore, India; Happiest Minds has operations in USA, UK, The Netherlands, Australia
and Middle East.

To know more about our offerings. Please write to us at business@happiestminds.com

https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/artificial-intelligence-cognitive-computing/
https://www.happiestminds.com/digital/

