
Container Security
powered by DevSecOps

History of containers

Unix V7 (1979)

FreeBSD Jails

Chroot system call was introduced in 1979 in Unix version -7. Changing the root (/)
directory of process and corresponding child process to a new location in the file system.
It was the beginning of process isolation, by parting file access to for each process.

BSD (Berkeley Software Distribution) incorporated chroot in 1982, FreeBSD Jails facili-
tated administrators to partition a FreeBSD system into several independent, chunks of
systems called Jails. Also, FreeBSD Jails can be assigned with IP address for each system
and configuration. Evolution of Jails ease administration which will isolate the service
and customer security.

Meaning of Container
Containers are a type of software, which isolates environment running within a host
machine’s kernel that allows us to run application-specific code. Decoupling the
containers-based applications can be deployed across an environment which can
be either on the public/private cloud, personal laptop and data center as well.

Evolution of containers
Below timeline shows a brief history of containers

1979 : Unix
version-7

2001 : Linux
Vserver

2004 : Solaris
containers

2006 : Process
containers

2000 :Free
BSD jails

2005 : Open VZ

Container Security powered by DevSecOps 02

https://www.happiestminds.com/services/cloud-data-center-advisory-transformation/

Linux VServer
Linux Vserver like FreeBSD Jails, partition resources, this can be implemented by
patching the Linux kernel.

Solaris container
Solaris Containers constitutes system resource controls (file systems, network
addresses, memory), and boundary separated by zones that leveraged features like
snapshots and cloning of zone file system provided by zones.

Open VZ
 Open VZ is an OS-level virtualization technology for Linux which uses a patched Linux
kernel for virtualization, isolation, resource management and check pointing.

Process Containers
Process Containers was designed for resource usage, accounting, limiting and isolating
of a collection of processes. Later renamed to “Control Groups (Cgroups)” a year later and
eventually merged to Linux kernel 2.6.24. Google launched the process container.

History of containers (Cont..)

2008 : LXC
(LinuX

Containers)

2013 : LMCTFY
(Let me contain

that for you)

2013 :
Docker

2017 :
Container

tools become
 mature

2011: Warden

2016:
Container
Security

Container Security powered by DevSecOps 03

LXC
It's the first and full implementation of Linux Container (LXC) manager without any patch
requirement, and this was done using Cgroups and Linux namespaces which works on
single Linux kernel.

Warden
Was started by CloudFoundry in 2011, using LXC in the early stages and later replaced it
with its implementation. Warden can isolate environments on any OS, running as a dae-
mon/service and providing an API for container management seeded the idea to develop
the Docker container. It was developed as a client-server model to manage and build a
collection of containers across multiple hosts, and Warden has a service to maintain
Cgroups, namespaces and the process life cycle.

LMCTFY
Let Me Contain That For You (LMCTFY) was introduced in 2013 as an open-source version
of Google's container stack, providing Linux application containers. Applications will be of
Container aware, creating and managing their Sub-Containers. Deployment in LMCTFY
stopped in 2015.

Docker
Popular containers at present across Enterprise, later 2013 has seen the growth of
Docker as well in addition to LMCTFY, Same year container exploded in popularity. Like
Warden, Docker also used LXC in its initial stages and later replaced that container
manager with its own library, libcontainer. Docker offering an entire ecosystem for
Container Management, separated itself from the pack.

Container for windows
Microsoft also launched its container support in 2016 called NANO for windows
applications. Windows 2016 server will be shipped with the container as default support
and Later included with windows 2010 as well. With this implementation, Docker would
able to run Docker Containers in windows natively without any Virtual Machine to run
Docker.

Container Security powered by DevSecOps 04

Containers Vs VM

Virtual Machines Containers

Above diagram portray the difference between Virtualization and Containers, let us
discuss how both works. Containers are different from Server Virtualization, and each
Virtual Machine can run an OS (Which can be of Linux or Windows) in an independent
environment and present to an application, via abstraction, a substitute to a physical
machine.

The hypervisor isolates the Operating System and application from the underlying
hardware. Hypervisor emulates hardware from pooled resources, which can be shared
with multiple Virtual machines (Resources – Memory, CPU, Storage and Network).

In case of one VM-1, all the binary1/library1 and dependencies for application-1, If any
another application-2 must be installed on same the VM-1 with different binary2/library2
and dependencies which might cause bottleneck situation for Application1. So, avoid this
situation, and multiple machines for different application Containers will ease the
administrator and developer job.

Like Virtual Machines, containers allow you to package your application together with
libraries/binaries and other dependencies, providing isolated environments for running
your software. Containers share the OS kernel, not the resources, only one instance of an
OS can run many isolated containers. This feature allows containers to swap between OS;
this feature adheres DevOps best practice.

App 1 App 2

App 1 App 2

Bin / Lib Bin / Lib

Guest
OS

Guest
OS

Hypervisor

Host operating system

Hardware

Container Runtime / Engine

Host operating system

Hardware

Container Security powered by DevSecOps 05

The Importance of
Container Security
With the extensive usage of Container-based applications, systems became more
complicated on administrating and risk of increased security vulnerability for containers.
Vulnerabilities like dirty COW only advanced the thinking. Along with the software
development lifecycle it led to a deeper concern on security, making it a critical part of
each stage in container app development, also known as DevSecOps.

Secure container with DevSecOps
All the above discussed are the history of containers and what makes differences
between VM and container. In the sections below, let us understand the best practices
and aspects as to how containers can be secured.

When deploying a container, it should be fortress by network policies, assigning roles
(RBAC) and container image should be free from known vulnerabilities and have bare
minimum functionalities.

According to “Cloud-native computing Foundation” Deployment of a container across the
organization is taking off widely, most of the firms across the world have more than 250
containers deployed, as per stats 1 to 50 containers are deployed in less than a quarter.
The increase in containers makes security more essential and more complicated
 to save at the same time.

Container image and Trusted/Signed
 Layers of files are used to create Containers; the Container community calls these files as
‘Container Images’. The most important for security is the base image because it is used
as a checkpoint for spinning the container. While adding application, Package
managers and while making config changes to containers, admins should be cautious
enough and proactive, since we`re adding external content to an image.

Images shouldn’t contain any secrets such as AWS or API keys. Developers sometimes
leave Keys or secrets in images. It’s advisable to supply the keys during runtime, statically
embedding inside the image is inviting the attackers to exploit the containerized
application.

Always prefer trusted/signed image from a registry, which provides another layer of
protection. A good first step is to use a minimal base image as it is possible to run the
application without any issue. Post successful application run, the image can be built with
dev package, certify and trusted to make as vulnerability free template image for
successive usage.

Container Security powered by DevSecOps 06

https://www.happiestminds.com/services/it-security-services/
https://www.happiestminds.com/services/sdn-nfv/

Tools for Containers
Different tools available in the marketplace and from open source enthusiast to scan the
container image statically and dynamically to raise a flag when malicious or vulnerabilities
are found, below are the popular software’s

Twistlock: This software scan
container for expected behavior
and whitelist process, Networking
setups like source-destination IP
addresses, port and storage
practices so that ambiguities are
reported.

Polyverse: This software will spin
the container within a fraction of
seconds and relaunch the
application in a good state.

Aqua Security: Aqua software
assists better practices for
containers, Maintains the
difference in container and
originating image. Use to
automate vulnerability protection
and prevents CVE exploits.

Containers should be immutable
images with a minimal number of
dependencies as they needed to run
a single application in one container.

Container Security powered by DevSecOps 07

Runtime container security

Container Patch Management
Patching containers isn’t a good option though, and there can be of thousands of them in
an environment irrespective of dev or pre-prod stage. Containers live very short – on an
average two and a half-day if the organization is enabled with CI/CD process. However, if
vulnerabilities detected in a container, it needs to be destroyed and rebuilt again from
scratch to avoid the errors.

Container image has to components: The Base image and Application image. To patch a
containerized system, we must update the Base image and then rebuild the Application
image. In which case, therefore, the vulnerability in the Base image will be eliminated at
an early stage and recreating the container in line with your typical CD process.

By attaching Seccomp, Apparmor, or Selinux profiles to containers, you provide robust
security isolation around the container to prevent it from making a SYSCALL.

Container Registry
A Container image is a kind of template that remains in storage, and each Container is an
instance of an image as we store Container images and generate containers from those
images as needed. There are several public registries and the repository in which
container images stored is referred to as a registry.

DevOps pipelines to extended with scanners that search containers for packages and
scan image with known vulnerabilities and alerts the owner if vulnerabilities detected in
the Container.

Seccomp - system call operates on
the Seccomp state of the calling
process—this feature to restrict
your application’s access. Seccomp
policies are defined using JSON
files.

Apparmor – Its Linux security
module used to protect the OS and
its application from security
threats, Apparmor profile blocks
reading from unsafe directories.

Most of the organization maintain public registries such as Docker hub which provide their
scanning service. For private registries, security providers such as “Twistlock” offers
scanning capabilities. Keeping images in a private registry gives greater control and
condition affecting its security. It’s always advisable to use signed Container and pulling
Container from public registry should be scanned statically for vulnerability and kernel
threats before spinning the image. Using public registry for managing the COI isn`t wise,
Private registry is precise for an enterprise solution. Owning an enterprise registry must
be highly available, geographically replicated and ready for automation. Additionally, the
private registry should have Log Management for auditing, Encrypted CLI, SSO and
Vulnerability scanning.

Container Security powered by DevSecOps 08

https://www.happiestminds.com/solutions/threatvigil/
https://www.happiestminds.com/services/advanced-threat-management/

The recent attack in Docker registry

A Container image is a kind of template that remains in storage, and each Container is an
instance of an image as we store Container images and generate containers from those
images as needed. There are several public registries and the repository in which
container images stored is referred to as a registry.

DevOps pipelines to extended with scanners that search containers for packages and scan
image with known vulnerabilities and alerts the owner if vulnerabilities detected in the
Container.

Container Privilege
User privileges are always a top priority in a container which should be limited only
perform the limited tasks. Providing elevated privilege to the user is inviting intruders to
break out of the Container. Regular check on the default user privileges of any packages
that you include in containers, and any open source container images that you include in
your registry.

For example, Privileges should be kept close track while designing the containers for
microservices. For example, when accessing the database, containers that read from or
write into the database need the privileges required for those tasks. Never chose to allow
users root access within a container.

Container daemon binds to Unix socket instead of TCP port, by default user root owns the
Unix socket, and other users can access it using Sudo. Container daemon always runs as
the root user. It’s advisable to create a group and add users to it. When Container runs on
privileged mode, Container can not only access to all hosts devices and files but also use
most of host computer’s kernel functions. You can use like Systemctl program or run
docker daemon in a Docker container.

“Docker Hub” has been hacked in
April 2019 - https://threat-
post.com/docer-hub-hack/14417
6/

The Recent researcher found 17
Crypto-mining containers in
Docker hub.

Most of the organization maintain public registries such as Docker hub which provide their
scanning service. For private registries, security providers such as “Twistlock” offers
scanning capabilities. Keeping images in a private registry gives greater control and
condition affecting its security. It’s always advisable to use signed Container and pulling
Container from public registry should be scanned statically for vulnerability and kernel
threats before spinning the image. Using public registry for managing the COI isn`t wise,
Private registry is precise for an enterprise solution. Owning an enterprise registry must
be highly available, geographically replicated and ready for automation. Additionally, the
private registry should have Log Management for auditing, Encrypted CLI, SSO and
Vulnerability scanning.

Container Security powered by DevSecOps 09

https://www.happiestminds.com/services/robotic-process-automation/

Author Bio

Container Networking Security
Securing containerized application is vital and more challenging since container-based
application stack sits in a hybrid environment which needs to interact with both container
and non-container application. To interlinking communication, we need to secure an L3
and L7 network for access and control management. Securing the rudimentary layer of L2
and L3 should be a priority between the container and non-container networks, whether
it is facilitated by Internal firewall policies or routing tables, VPNs.

External connection to containers should be secured, ingress or egress should identify the
vulnerability attacks. These policies shouldn`t be based only on an IP address. Containers
can be constantly commissioned with different IP addresses for the same service
(docker-compose in docker for providing service). A security policy with application
protocol at Layer 7 can minimize error and automate the monitoring and security task,
wrong protocol accessing or attempting to connect containers should be reported as a
violation.

Sushena. P has 12 + years of experience in DevOps,
Cloud/Data Center Automation, tools Integration, RPA,
Architecture and Infrastructure solutions. He is
responsible for DevOps/Automation practice strategy,
solution and implementation across various projects.
He is passionate on exploring and integrating products
with cloud technologies.

Business Contact

About Happiest Minds Technologies
Happiest Minds, the Mindful IT Company, applies agile methodologies to enable digital transfor-mation for enterprises and technology
providers by delivering seamless customer experience, business efficiency and actionable insights. We leverage a spectrum of disruptive
technologies such as: Big Data Analytics, AI & Cognitive Computing, Internet of Things, Cloud, Security, SDN-NFV, RPA, Blockchain, etc.
Positioned as “Born Digital . Born Agile”, our capabilities spans across product engineering, digital business solutions, infrastructure management
and security services. We deliver these services across industry sectors such as retail, consumer packaged goods, edutech, e-commerce,
banking, insurance, hi-tech, engineering R&D, manufacturing, automotive and travel/transportation/hospitality.

Headquartered in Bangalore, India; Happiest Minds has operations in the U.S., UK, The Netherlands, Australia and Middle East.www.happiestminds.com

