
Traditionally, businesses have spent a significant amount of time and effort on coding, testing and

maintaining the backend APIs for a software application. However, we at Happiest Minds decided to

pivot towards automating the end-to-end testing of microservices with next-gen intelligent test

design techniques. Our Script-less API Test orchestrator engine marks a huge shift towards eliminating

the necessity of writing code and helping in the validation of inter-services communication and the

intended business logic across multiple sub-systems and component interactions.

INTELLIGENT API 
TEST ORCHESTRATION

NEXT GEN STRATEGY FOR 
TESTING MICROSERVICES

PRODUCT ENGINEERING & TESTING SERVICES

Monolithic programs usually have a wide code base and lack modularity. Also, developing a

monolithic framework poses several challenges associated with managing a large codebase, adopting

new technology, scaling, launching, implementing new changes and more.

Microservices have become a popular architectural style for today's cloud-driven and native

applications that are self-contained, independently deployable, resilient and evolve quickly. It is high

time to research and implement innovative test design techniques to orchestrate and automate the

interactions involving all sub-systems.

MICROSERVICES VS API

"Quality means doing it

right when no one is
watching." - Henry Ford

Microservices communicate over networks with each other and use

external data-driven interactions. Microservices handle requests by

passing messages between the respective modules to form a response. A

specific request can involve interaction with databases and gateways of

repositories

MICROSERVICES TESTING

to access data. So, Automated Test assessments should provide wider coverage with the

finest possible granularity for each of those interactions.



With the help of unit and integration testing, we can

validate the functional correctness and the rationale

present in the individual modules that make up each

microservice. In any case, without progressively fine-

grained test suites, we can't be certain that the

microservices interact to fulfill business prerequisites.

While this can be accomplished with completely

integrated end-to-end test execution, precise test

feedback and shorter test runtimes can be acquired

by testing the microservices detached from its

outside dependencies.

A
u

to
m

a
te

d
 R

e
g

re
ss

io
n

 &
 E

x
p

la
n

a
to

ry
 T

e
st

in
g

•
E
xe

cu
ti

n
g

 a
ll
 le

ve
ls

 o
f 
te

st
 c

a
se

s 
in

 t
h
e
 p

re
-p

ro
d

u
ct

io
n
 e

n
vi

ro
n
m

e
n
t

•
E
xp

lo
re

 t
h
e
 s

ys
te

m
 m

a
n
u
a
ll
y 

u
si

n
g

 o
n
ly

 t
h
e
 e

xp
o

se
d

 e
n
d

 p
o

in
ts

 b
y 

co
n
si

d
e
ri

n
g

 t
h
e
 B

u
si

n
e
ss

 R
e
q

u
ir

e
m

e
n
ts

 in
 a

 T
im

e
 B

o
xe

d
 M

a
n
n
e
r

Unit Testing

• Unit Testing of Individual Domain Logic at black box

• Unit Testing of objects & methods by mocking external behavior

• Unit Testing of Individual Services

Integration Testing

• Integration Testing of every service with other Micro Services, Data Stores, 

Caches etc.

• Service Gateway Integration Testing for Protocol Compliance & Errors (HTTP, 

SSL etc.)

• State Transition Testing for any external events / triggers

• Persistence Integration Testing for testing of any persistent data objects, 

Object Relational Mappers etc.

• Testing of different data exchange formats between Micro Services - JSONs, 

AVRO, Atom Syndication Format, Atom Publishing Protocol etc.

Component Testing

• This involves testing of all the End Points with all the Internal and External 

Integration Points. This can involve High Level Endpoints, Triggers from Batch 

Jobs etc.

• Allows more layers and integration points to be exercised

• Verify that the micro service has the correct network configuration, correct 

URL and is capable of handling network requests.

• Ensure the contract expected by the consuming service is met in all cases and 

the reliability and robustness aspects of the contract are met.

End-to-End Testing / Contract Testing

• End to End Testing of the Business Logic with Complete Service Orchestration 

and Choreography.

P
o

st
 S

p
ri

n
t

P
re

-P
ro

d
u

ct
io

n

S
p

ri
n

t

L
e
v
e
l

Pre-

Production & 

Production

TARGETED TEST TYPES

Installation & Upgrade 
Testing

Configuration 
Testing

Interface Testing -
Validate Data and 

Control Coupling 
between Micro Services

Business / Domain / 
Orchestration Testing

Compliance Testing for 
Standards & 

Regulations

Protocol testing, 
Network, Data Formats, 

Schema etc.



Development teams probably aren’t building the APIs or

microservices in a vacuum. Although these microservices

exist as independent functional entities, they are also

designed to communicate with all services & sub-

systems.

By consolidating the unit, integration tests and

component testing, we can accomplish higher modular

test coverage that makes up every microservice. The

implementation correctness is validated against the

intended business logic.

However, in everything except the most straightforward

use cases, clear value addition to the business is not

accomplished except if numerous set of microservices

cooperate to satisfy bigger business processes. Hence,

there is a need to have a well orchestrated test execution

to validate the end-to-end system interactions. To start

off, the microservices architecture is reviewed with

architects and subject matter experts for correctness and

completeness from a business perspective.

'Orchestration' here, refers to the automated configuration, coordination, and management of all

internal and external systems. It is the process in which a single consumer of the API collects

information from different endpoints of the API, using the data received from the initial calls to make

further calls to other endpoints.

The system APIs and microservices, through their definition and architecture, decouple the

complexities of underlying structures. Based on the contractual definition of API calls, relevant CRUD

operations are arranged together based on the use cases, business logic and are chained together

based on schema definition to ensure continuity in test execution.

An orchestration layer (reference image above) is formed by sequencing the API calls and chaining

them to support the inter-services communication. In addition, it also enables parallel execution

triggers to suit the end-to-end test logic and application’s user workflows.

"If you're afraid to change something it is clearly poorly designed" - Martin Fowler



Test infrastructures with execution pipelines are a must to enable this form of end-to-end testing. Here

the relevant test suites of every service are executed multiple times across environments (Dev, QA,

Pre-Prod, Prod) to validate that there aren’t any regression defects or breaking code changes being

introduced.

END-TO-END TESTING

It becomes evident that when the back-end test workflows are run against multiple environments,

there is a greater probability of bugs surfacing. This is especially valid for complex systems running on

multiple virtual machines where there might be minute contrasts between various libraries and where

the design may vary, regardless of the virtualization layer.

FAIL EARLY, FAIL OFTEN

With the help of mind maps and visual modeling techniques and discussion with architects or SMEs,

the end-to-end system & component interactions are evaluated with data and control coupling

analysis design techniques.

End-to-end tests may also have to cater to the

asynchronous aspects of a system due to the

backend processes between microservices or via the

GUI. This can result in flakiness of the tests, consume

excessive test run times and impose extra cost of

maintenance of the test suites.

The APIs and microservices, through their definition

and architecture, decouple the complexities of

underlying structures. The end-to-end services test

interact at the core granularity of the systems.

An orchestrated workflow is exposed as a service

that can be invoked through an API call. The

orchestration engine is then integrated to the CI/CD

pipeline and helps in triggering the script less

automated workflows at runtime.

Raw datasets are optimized with combinatorial

pairwise coverage analysis. The resultant optimal

data sets are then fed as parameterized input

datasets for the end-to-end API regression test

scenarios.

INTEGRATION WITH CI/CD PIPELINE



From an architectural perspective, every microservice is treated as a black box on its own and interacts

with other services or sub-systems to achieve the desired goals. So, integration and end-to-end tests

are authored in this style to provide quicker feedback on the build stability while refactoring or

expanding the rationale contained inside the modules.

FASTER BUILDS, RAPID FEEDBACK

Visual automation of backend test workflows, consistent with current business rules and best

practices, increasing the test effectiveness and making the approach much easier to scale and robust

to withstand any amount of code changes.

LOWEST MAINTENANCE

Visual approach to create end-to-end API test scenarios for system interactions and fine tuning them

to generate optimized tests for complex chaining of API workflows.

VISUAL TEST COVERAGE

End-to-end test scenarios formulated as visual workflows from all requirement sources, use cases,

architectural reviews & component interactions.

IMPROVED TEST DESIGN

The visual workflows will map all possible routes that data can flow through an API. Missing logic or

APIs is quickly spotted and added. This can be mocked as stubs to ensure test execution is not

hindered with missing or not yet developed microservices.

MOCKING API ENDPOINTS

Testers no longer have to spend all their time attempting to optimize their automated test scenarios

by writing code. They have more time for exploratory testing of applications under test.

INCREASED PRODUCTIVITY

The inclusion of error workflows and exception handling at the test scenario layer helps in discovering

potential showstoppers much early in the game, which otherwise would have resulted in huge

production down-times. In addition, mimicking the production infrastructure in the lower

environments and running the tests help in simulating real time situations and unearthing defects.

UNEARTH CRITICAL ISSUES EARLY

Data is abstracted from the test logic and parameterized at the test scenario layer than at the

individual API entity layer. The test data is also decoupled from test logic and optimized by pairwise

analysis design techniques with the help of integrated data engineering utilities.

ABSTRACTED & OPTIMIZED TEST DATA

Visually structured and measurable end-to-end API test workflows with expected results clearly

defined, enable us to automate at a rapid pace and accommodate changes quickly. As a result,

scalability to accommodate complex interactions with multiple systems is no longer a challenge.

AUTOMATION AT SCALE



www.happiestminds.com

business@happiestminds.com

SYSTEM HEALTH MONITORING

The end-to-end tests provide quick inputs while the development team is refactoring the code or

expanding the rationale contained inside integration modules. In addition, if the rationale contained in

the integration module relapses or if the external component becomes inaccessible or breaks its

contract the relevant test failures must be identified quickly during execution.

To cater to these challenges, QE teams compose integration test workflows with just the right

combination of tests to give quicker feedback of the system's overall health along with the application

stability. The system integration tests are then connected to the CI/CD pipeline to be triggered for

continuous monitoring of availability, performance and functionality of all microservices upon every

code commit.

SIMPLIFIED TEST PROCEDURE

(1) End-to-end test scenarios formulated as visual workflows from all requirement sources, use cases,

architectural reviews & component interactions.

(2) The API calls and relevant CRUD operations are arranged and chained together for establishing

continuity in the business logic.

(3) API test framework is enabled with auto generation of interface and model classes based on the

services configuration for seamless orchestration.

(4) Data is abstracted from the test logic and parameterized at the test scenario layer than at the

individual API entity layer.

The most powerful automated test approach is to use the right set of tools and technologies that can

directly certify the microservices with simulated actions of a real user. At Happiest Minds, we

embraced intelligent test orchestration design techniques for today's organizations to have the edge

over seamless adoption of microservices, and to master the inherent challenges of testing in a highly

distributed application environment. We firmly believe that Visual Test Orchestration by modeling

business logic with script less microservices test automation is the way forward.

About Happiest Minds Technologies 

Happiest Minds, the Mindful IT Company, applies agile m ethodologies to enable digital transformation for enterprises and technology 
providers by delivering seamless customer experience, business efficiency and actionable insights. We leverage a spectrum of disruptive 
technologies such as: Big Data Analytics, AI & Cognitive Computing, Internet of Things, Cloud, Security, SDN-NFV, RPA, Blockchain, etc. 
Positioned as “Born Digital . Born Agile”, our capabilities spans across product engineering, digital business solutions, infrastructure 
management and security services. We deliver these services across industry sectors such as retail, consumer packaged goods, edutech, 
e-commerce, banking, insurance, hi-tech, engineering R&D, manufacturing, automotive and travel/transportation/hospitality.

A Great Place to Work-Certified™ company, Happiest Minds is headquartered in Bangalore, India with operations in the U.S., UK, The

Netherlands, Australia and Middle East.

www.happiestminds.com

If you are interested in Intelligent API Test Orchestration, please book a 30 -

minute consultation with our Head of Testing Services, Ananda Kashyap, so we 

can understand your priorities and identify how we can add value.

Ananda Kashyap

Sr Director and Head of Testing and DevOps Practices

business@happiestminds.com

https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/Insights/internet-of-things/

