
Observability
in Cloud-Native
Applications

Given the distributed auto-scaling nature, frequent deployments and the many
potential points of failures and latencies of modern cloud-based applications in
ephemeral environments; these systems are increasingly more complex to monitor and
debug in production, thus making observability a fundamental requirement to cut down
time spent on triage. With Metrics, Logs, and Traces forming the so-called “Pillars of
Observability1”, this paper seeks to explore –

Traditional monitoring typically revolves around defining a few crucial metrics and
having automated monitoring and alerts on any threshold violations on those metrics.
These metrics serve as broad symptoms to indicate a larger problem in a specific part
of the system. However, they provide limited help in nailing down the exact source or
root cause, as they cannot be correlated with the appropriate log events. Tracing fills
this very gap by helping replay and investigate what happened with an individual
transaction or a group of transactions (e.g., a sudden degradation in a component) -
thereby providing a built-in debuggability in production code execution, where a
debugger cannot be attached.

Monitoring looks out for failures that are anticipated and defined upfront, whereas
observability is a broader and a more open-minded approach to navigate and discover
the unknown unknowns too. A holistic approach includes health-check endpoints that
report the status of running applications to monitoring tools that consume them,
application and system metrics that can help in alerting anomalies, timestamped logs
rich in context to help investigate the root cause of an issue, and context-rich tracing
that can help correlate and debug distributed call traces to pinpoint exact sources of
latencies and errors.

Abstract

Introduction

Each pillar in-depth – their
respective capabilities, how
they combine to provide a
holistic view of a complex
distributed system, and their
respective limitations when
used in isolation.

Open Standards and
Tools.

Analytics on Observability
Data – critical path
analysis, anomaly
detection, error analysis,
etc.

Current and Emerging
Trends.

Observability in Cloud-Native Applications 02

Logs
Logging refers to capturing timestamped events traditionally as free-form text, or as
structured logs which are more machine-friendly and suitable for log indexing, search
and analytics. Timestamps provide a global ordering of events to logs generated from
disparate or distributed processes. Event data from all service instances are shipped to
a single system for aggregated/centralized indexed storage, querying, analysis and
processing.

Unlike metrics, log entries can contain fields with high cardinality, which makes it
possible to analyze logs and slice and dice on various dimensions to identify potential
causes of issues. Logs are rich in context, and once aggregated, they support search
and debugging at a very fine level of granularity over the entire request or transaction
at once. Since logs are exhaustive and generally not sampled, they represent the
totality of requests and can be used for auditing, billing (from metering logs), analytics
for detecting frauds and attacks etc. Logging is also very easy to adopt. On the
downside, compared to metrics, they are resource-intensive in their entire lifecycle of
generation (as they are usually blocking), transmission, indexing and storage, querying
and processing, to retention. They also increase with traffic or load conditions. Unlike
traces, logs do not capture causal relationships between events, and hence may lose
out on critical clues while investigating issues. The traceID should however be put into
the MDC and made part of the log conversion pattern, to ensure consistent logging of
the trace identifier in logs, which would in turn help in correlating logs with traces.

Traces are request-centric and tell the complete story of a request or transaction,
whereas metrics are system-centric, providing a high-level view of whether the system
works as expected without answering the WHY. Logs provide a timestamp, ordering
and the finest-grained detail about events.

Logs – A log is a timestamped
event of interest, with either a
structured or a free-form
payload attached that lends
context to the event.

Metrics – A metric is a numeri-
cal measure of some system
attribute under measurement
at regular intervals of time.

Traces – A trace is a complex
object that encapsulates an
entire request’s journey
through a distributed system as
a causally connected series of
events sharing a common
traceID, the unique identifier of
the trace.

Observability is hence comprised of 3 key pillars –

ELK (Elasticsearch-Logstash-Kibana)2 is a popular open source log management
solution. Elasticsearch provides log storage with text indexing and search, Logstash or
fluent provides log shipping (from hosts) and an optional transformation before writing
to log stores like Elasticsearch. Kibana provides a visualization web interface for
Elasticsearch data. For high-volume logging, a broker like Kafka is often used as a
buffer before Logstash, to keep up with the spikes.

Observability in Cloud-Native Applications 03

MetricsLogging refers to capturing timestamped events traditionally as free-form text, or as
structured logs which are more machine-friendly and suitable for log indexing, search
and analytics. Timestamps provide a global ordering of events to logs generated from
disparate or distributed processes. Event data from all service instances are shipped to
a single system for aggregated/centralized indexed storage, querying, analysis and
processing.

Unlike metrics, log entries can contain fields with high cardinality, which makes it
possible to analyze logs and slice and dice on various dimensions to identify potential
causes of issues. Logs are rich in context, and once aggregated, they support search
and debugging at a very fine level of granularity over the entire request or transaction
at once. Since logs are exhaustive and generally not sampled, they represent the
totality of requests and can be used for auditing, billing (from metering logs), analytics
for detecting frauds and attacks etc. Logging is also very easy to adopt. On the
downside, compared to metrics, they are resource-intensive in their entire lifecycle of
generation (as they are usually blocking), transmission, indexing and storage, querying
and processing, to retention. They also increase with traffic or load conditions. Unlike
traces, logs do not capture causal relationships between events, and hence may lose
out on critical clues while investigating issues. The traceID should however be put into
the MDC and made part of the log conversion pattern, to ensure consistent logging of
the trace identifier in logs, which would in turn help in correlating logs with traces.

Metrics deal with aggregate-level measurements about a process (e.g., throughput,
latency, data volumes), and they can be monitored over time to identify trends. Being
numbers, they are very resource-efficient right from computation (even in distributed
mode), to transmission, compression, storage, retrieval and retention. Since events are
reduced to aggregates, the memory usage due to instrumentation remains constant
w.r.t the number of events, being a function of the number of metrics being tracked and
their dimensions. Once collected, they also lend themselves well to further statistical
analysis, and for monitoring and alerting when critical thresholds are breached. On the
downside, metrics lack context and though good overall “signals” of the system health,
they lack the effectiveness that logs and traces can boast of in deeper investigation of
issues.

Metrics support dimensions/labels, which lend them somewhat of a relatively static
“context”. Metrics and their dimensions may refer to instrumentation-side internals,
e.g., an outbound RPC endpoint invocation that needs monitoring, HTTP classes of
response codes (3XX, 4XX, 5XX) or, they may refer to the targets being scraped – e.g.,
the service, the cluster, the region, etc.

ELK (Elasticsearch-Logstash-Kibana)2 is a popular open source log management
solution. Elasticsearch provides log storage with text indexing and search, Logstash or
fluent provides log shipping (from hosts) and an optional transformation before writing
to log stores like Elasticsearch. Kibana provides a visualization web interface for
Elasticsearch data. For high-volume logging, a broker like Kafka is often used as a
buffer before Logstash, to keep up with the spikes.

Figure 1: ELK Architecture (Source: http://elastic-stack.readthedocs.io)

Observability in Cloud-Native Applications 04

A metric is identified by the metric name and any (optional) set of labels. The observed
values for the metric are reported at every time interval. The metric’s observed value,
the labels that provide additional meta-information/context to the observation and the
timestamp of the observation are stored in the metrics system.

The number of unique values a label can assume is called its cardinality. e.g., for the
metric api_hits_total, if one of the labels of interest is the HTTP method (GET, POST),
the cardinality of this label is 2. Similarly, other dimensions of interest could be the
region of execution – e.g., if the application is deployed in 3 regions, namely
{ap-south-1, ca-central-1, and eu-west-1}, that makes the cardinality of this label as 3.

For any metric, a time-series gets created for every applicable combination of its labels
(over the label values) – 6, in the above example. Hence cardinality explosion is
something to watch out for and avoid, by limiting labels to those dimensions of interest
which can assume a small bounded set of values only (typically < 10). This helps in
keeping the performance of scraping, indexing, and queries modest. Since high
cardinality can overwhelm the timeseries database, most metrics systems impose
constraints on cardinality. This limitation again requires complementing metrics with
event logs, which have no cardinality limits as such.

Client instrumentation libraries typically expose health and metrics endpoints by
default and provide OS and runtime engine/process-level statistics (e.g., cpu metrics,
jvm metrics, logging metrics, up time metrics, file descriptor metrics) out of the box.
Additionally, any key libraries like RPC libraries can be wrapped, instrumented and
reused across applications/microservices, for engineering consistency.

Counters – represent an ever-in-
creasing measurement. e.g. execution
or invocation count, error count. A
typical monitoring use-case is to
measure the rate of change of the
counter, to observe the trend and use
it for alerting. Counters reset to 0
whenever the application restarts.
System uptime itself can be a
valuable counter.

Gauges – represent a point-in-time
snapshot of a given measurement
that can go up/down over time. e.g.,
connection pool usage,
mem/cpu/disk usage, #active_-
threads, #active_executions. It could
even be a business metric like
#active_carts on an ecommerce site.

Metrics are of two main types –

Observability in Cloud-Native Applications 05

A leading open-source tool in the metrics space is Prometheus3, which supports multiple
service discovery mechanisms to dynamically discover and scrape targets in orchestrated
environments like Kubernetes. Applications can be instrumented using either Prometheus
client libraries or other standard libraries, to expose metrics over HTTP (or, JMX). Exporters
can be used to expose these metrics in a format that can be scraped by Prometheus.
Prometheus periodically scrapes the configured targets to pull out the exposed metrics
and persist them to a time-series database. Grafana provides a user-interface for
query/visualization and for alerting on metrics. Prometheus also supports a
push-mechanism for ephemeral targets, e.g., lambdas or batch jobs that run and die (not
continuous applications). Push gateways can be used to push job metrics, e.g., last run
duration, last run timestamp, last success timestamp (can be used for alerts) etc.

Request Rate –
#requests/sec the service is
serving. Similarly, in case of
lambda functions, these
would be #invocations/sec.

Request Error Rate - #failed_
requests/sec. For functions, this
would be #errored_invocations/
sec.

Request Duration – duration of the
request in a time unit. In case of
functions, this would be the
duration it took to process an
event (including initialization time
for the first event).

Utilization – proportion or,
%age of resources used (e.g.,
cpu utilization, memory
utilization, connection pool
utilization, thread-pool utili-
zation). In case of functions,
this could be the number of
function instances running as
a %age of the maximum
concurrency allowed for the
function.

Saturation – a measure of extra
work that is queued up for servic-
ing, e.g., queue size. In the case of
functions, the #invocation
requests that are throttled can
serve as a measure of saturation.

Errors – count of
errors.

Services are typically measured by RED
(Rate, Error, Duration) metrics –

Infrastructure and offline processing workloads are typically
measured by USE (Utilization, Saturation, Errors) metrics –

Observability in Cloud-Native Applications 06

Tracing4 provides a means to observe the behavior of an end-to-end request/
transaction, as it propagates across different endpoints of a distributed system.
Conceptually, a completed trace is a transaction tree like what a distributed call graph
would stand for, with child nodes representing different dependencies/endpoints that
participate in the entire request processing, with each call timed individually. Hence
traces are visualized as Gantt charts, representing service dependencies, start time
(representation simplified to 0-based instead of a real timestamp here) and durations.

Traces
Figure 2: Prometheus Architecture (Source: Prometheus)

Figure 3: Trace View

Observability in Cloud-Native Applications 07

Srvc B Self
time: 10ms

Srvc A Self
time: 5ms

<< { spanID, traceID } propagated in calls>>

Wall time (ms)

Srvc A Self
time: 10ms

Service A, Start Time: Oms, Duration: 100ms [0ms, 100ms]

Service B, Start Time: 1Oms, Duration: 70ms [10ms, 80ms]

Service C, Start
Time: 15ms,

Duration 25ms
 [15ms, 40ms]

Service D,
Start Time: 15ms,

Duration 30ms
[15ms, 45ms]

Service E,
Start Time: 45ms,
Duration 25ms
[45ms, 70ms]

Service F,
 Start Time: 85ms,

Duration 15ms
[85ms, 100ms]

Wall time [ms]

Srvc B Self
time: 5ms

<<traceID assigned>>

Tracing points are usually the ingress and egress points in the services, where a request
either enters or, exits a process boundary. Hence a request intercepting layer makes a
good tracing point. For every outgoing RPC call, a new child span should be started and
closed on call completion (for async calls, this is the on-complete callback point) and
any exceptions encountered with the call should be logged to the errored span. In case
of messaging, a new child span should be started by the message producer before
publishing the message to the message bus and closed once the message is enqueued.
Services are instrumented with tracing libraries. At the system ingress boundary, like
the API Gateway, a traceID is assigned to any incoming request as it’s end-to-end
correlation id, which gets propagated along to all downstream services the request
traverses through, via http headers/message headers etc. Any invoked downstream
service links it’s spans with the respective parent span and trace, thus preserving the
lineage. In-process propagation can be achieved via a Threadlocal variable used to
embed the current span to make it is accessible anywhere in the execution path within
the process.

Once a span returns, the corresponding span gets completed, and tracing agents
running on the services capture and send the spans across to a tracing backend/server,
where a trace gets reconstructed and persisted to a pluggable storage (commonly
Elasticsearch or, Cassandra). Thereupon, the trace can be queried over APIs or, via the
Tracing WebUI. The Tracing WebUI supports searching and visualizing traces by traceID
or, tags; and supports complex trace comparisons to examine the behavior of an
anomalous trace vis-a-viz a normal one.

Figure 4: A real trace visualization (Source: Zipkin)

Figure 5: Zipkin Architecture (Source: Zipkin)

Observability in Cloud-Native Applications 08

Instrumented client
(Reporter)

Non-instrumented server

UITransport

API

Zipkin

Storage

Database

Instrumented server
(Reporter)

Collector

Tags: Spans can be tagged (e.g., userID, cluster info, outbound endpoint invocation
details, sql-query references, response/error codes), to support multi-dimensional
queries in analysis of traces. Tags provide a mechanism for context-rich tagging of
spans.

Logs: Structured events, providing context around “what happened” with the span.
These can be used to log important events about the span, e.g., an error or, any event
that impacts the course of the request (e.g., a cache hit/miss, empty results from
polling a remote system).

Trace: Represents the end-to-end execution path of a request flowing through a
distributed system, as a DAG. A trace comprises of spans.

Span: Span is a named and timed operation in the request processing. Spans can, in
turn, spawn nested child spans, even concurrent ones. Spans provide causal
relationships within a trace. References model direct causal relationships between a
child span and its parent, represented by edges in a DAG. A span may have zero (in case
of root span) or many causal parents. Nested spans can either have a child-of (typically
one only) or, a follows-from kind of a reference with the parent span, depending on
whether the caller expects a response (e.g., RPC protocol) or not (e.g., a fire-and-forget
messaging protocol). A span also supports k-v tags, and
structured logs.

Figure 6: Trace Object Model

Observability in Cloud-Native Applications 09

Span

traceld: byte []
spanld: byte []
opName: String
startTime: long
duration: long

SpanRef

traceld: byte []
spanld: byte []

Causal links to ancestor spans { CHILD_OF, FOLLOWS_FROM }

{ STR, DOUBLE, BOOL, LONG, BINARY }

Searchable dimensions

C

KeyValuePair

key: String
vStr: String
vDouble: double
vBool: boolean
vLong: long
vBinary: byte[]

C

C

Log

timestamp: long

C

SpanRefTypeE

Value TypeE

<<refs>>

<<logs>>

<<fields>>

<<tags>>
<<valueType>>

<<type>>

1

1

1

1

n

n

n

n

Tracing is an intrusive technique and harder to implement compared to logs and
metrics, as it involves code instrumentation with tracing libraries like the open source
Jaeger5 and Zipkin6 However, it beats blackbox techniques of monitoring by
supporting rich contextual information and finer granularity within traces, which can be
queried and analyzed for deep insights. Tracers are designed to be low-overhead,
propagating only IDs in-band to the downstream services. Completed spans are
reported to tracing servers out-of-band (async). Sampling (simple random or, adaptive
sampling) of traces is another means of keeping the runtime overhead of tracing low in
high-traffic systems. A downside of sampling, however, is that it limits visibility into
infrequently occurring latency issues (e.g., p99 latency) or, rare failures.

Without tracing, it would be difficult to observe the runtime behavior, understand
causality, and isolate points of failures or latencies in a live distributed environment
made of complex synchronous and asynchronous interactions between microservices,
serverless compute components, and external systems. Beyond just a request-centric
view, traces, when analyzed in aggregate, can uncover valuable insights into which
service or resource is a bottleneck, and help in making informed optimization decisions
about which services impact the end-user experience the most, which services are on
the critical path etc.

As there are human limits to how much manual debugging and analysis can practically
be done on traces, it is useful to build analytics on these rich volumes of data to
discover patterns versus outliers, establish correlations and derive insights which
would otherwise be buried under individual traces. Common analytics use-cases
include service dependency graph, critical path analysis, error analysis, latency analysis,
anomaly detection etc.

Features can be computed out of individual traces e.g., total latency of the trace, trace
start time, no. of spans in the trace, no. of outbound network calls in the trace, entry
point of the root span, the client type (web client, android app, partner applications etc.),
origin of the request, server region etc., which can be fed to an ML model e.g., an
anomaly detection model, to flag anomalies. These features can be computed in near
real-time and can even be used to monitor trends. Tracing can also contribute to KPIs
like the end-to-end transaction processing time in a distributed system.

Dependency graph reconstructs the downstream dependencies of each service, thereby
representing the totality of the architecture in action. The dependency graph can help
visualize how exactly requests flow through the entire service landscape. Error analysis
can help with classes of errors and error stats per service. Latency analysis can help
pinpoint latency issues between inter-service calls. Critical path analysis can help in
optimization efforts, by identifying spans that are bottlenecks in the end-to-end
request execution and hence should be addressed first to shorten the trace execution
time.

Analytics

Observability in Cloud-Native Applications 10

For critical path analysis, a DAG of the trace would be the starting point. A gap7 in the
Open Tracing specification is how to model sibling relationships that denote more of a
sequencing constraint (a preceding sibling must finish before the following sibling can
start) than a causal relationship. In the absence of a formal support for this kind of
reference type within the OpenTracing model, a custom workaround needs to be
employed e.g., by introducing a special custom tag (say “next-of”) on spans to hold a
reference to any preceding sibling spans that must be sequenced right before it. When
the DAG is constructed, apart from the regular child-of and follows-from edges, edges
should be generated for this otherwise missing reference type as well. The diagrams
that follow depict the resultant DAG corresponding to the trace in Figure 3, and its
respective linearized version.

Figure 7: DAG View of Trace

Figure 8: Topologically Ordered View of Trace

Observability in Cloud-Native Applications 11

<<seq>>

<<seq>>

<<seq>>

A DB EC F

Service C
(durarion:

25ms,
slack: 5ms)

Service E
(duration:

25ms, slack:
0ms)

Service D
(duration:

30ms, slack:
0ms)

Service F
(duration:

15ms, slack:
0ms)

Service B
(self-time:

15ms,
slack: 0ms)

Service A
(self-time:

15ms, slack:
0ms)

Trace-level critical paths can be further analyzed by grouping them on root span
endpoints (application entry points) to arrive at critical paths globally. This can be
computed at the batch processing layer using the MapReduce paradigm.

The tracing infrastructure can include Kafka as an intermediate buffer between the
span collector and storage. Apart from absorbing traffic spikes, Kafka can enable a
real-time pipeline for streaming window-based aggregations on the trace either based
on heuristics or, a predetermined time interval to allow for all spans of a given trace to
be “seen” before computing features on it. Historical analysis on traces can be run to
incorporate any new feature introduced. A batch data store like Hadoop can enable an
analytics pipeline on historical data. The output of the analysis could be written to
various kinds of sinks like a TSDB, an event bus (for alerting), or the tracing store
(Elasticsearch or Cassandra) itself, depending on the nature of the analysis. Apache
Flink and Apache Spark Streaming/Batch are the commonly used open-source
frameworks for Big Data Analytics, with the same program reused in real time and
batch mode.

The critical path can be obtained by traversing the graph in a forward pass to compute
the early start (ES) and early finish (EF) for each node, and a backward pass to compute
the late finish (LF) and late start (LS) for each node.

All nodes with 0 slack (LF – EF) indicate tasks that cannot be delayed without impacting
the overall trace execution time. This sequence forms the critical path, as highlighted in
red.

The obvious critical path in a DAG is the longest path in time from the origin node to the
terminal node. All spans that fall on this path have a slack of 0. This can be computed as
follows –

Topologically sort the DAG, G =
(V, E). This would yield the
vertex order {A, B, C, D, E, F}
with appropriate edges
between them.

Recursively find the longest
path from the origin node to
the terminal node. For vεV, this
is obtained by computing the
max path cost (in time) from
the origin node to v over all
predecessor edges of v.

The longest path thus
obtained is the critical path.

01 02

03 04

ES: earliest a span can possibly start,
considering predecessor spans

EF (= ES + span duration): earliest a
span can possibly finish, considering
predecessor spans

LF: latest a span can finish without
delaying the trace finish

LS (= LF – span duration): latest a
span can start without delaying the
trace finish

Observability in Cloud-Native Applications 12

Log analytics pipelines too commonly use Kafka as the event bus, to enable real-time
complex queries and analytics on streaming log data. A lot of log analytics is also done
in batch mode.

OpenTracing and OpenCensus are two competing
open standards for observability, each with a
strong community. Unlike OpenTracing,
OpenCensus collects and exports metrics too.
OpenTelemetry is an evolving standard that merges
these two standards into a single instrumentation
standard that aims to standardize how telemetry
data gets collected and sent to backend telemetry
platforms. The OpenTelemetry backend is
pluggable and compatible with leading backends
supported by either project today. OpenTelemetry
offers backward compatibility and an easy
migration path for both the projects while setting
forth a unified set of specifications and libraries for
cloud-native observability telemetry.

Future Directions

Figure 9: Trace Analytics Pipeline

Observability in Cloud-Native Applications 13

Business Contact

About Happiest Minds Technologies
Happiest Minds, the Mindful IT Company, applies agile methodologies to enable digital transformation for enterprises and technology providers
by delivering seamless customer experience, business efficiency and actionable insights. We leverage a spectrum of disruptive technologies such
as: Big Data Analytics, AI & Cognitive Computing, Internet of Things, Cloud, Security, SDN-NFV, Blockchain, Automation including RPA, etc.
Positioned as “Born Digital . Born Agile”, our capabilities spans across product engineering, digital business solutions, infrastructure management
and security services. We deliver these services across industry sectors such as retail, consumer packaged goods, edutech, e-commerce, banking,
insurance, hi-tech, engineering R&D, manufacturing, automotive and travel/transportation/hospitality.

A Great Place to Work-Certified™ company, Happiest Minds is headquartered in Bangalore, India with operations in the U.S., UK, The Netherlands,
Australia and Middle East.

www.happiestminds.com

Response time is critical to any business, as latency or reliability issues in end-user
experience can significantly impact brand reputation and adoption, thereby leading to a
loss in revenue. While traditional monitoring may suffice for a service landscape that is
relatively straightforward and contained; with highly distributed and complex
architectures, tracing becomes a must. Wherever observability is carefully designed for
in software, it offers a deep capability for exploration and root-cause analysis in a live
system, thereby improving troubleshooting capabilities and accelerating issue
identification and resolution, more often proactively. This built-in observability in turn
leads to more robust software over time.

Bidisha Gangopadhyay is a Principal Architect at Happiest Minds,
where she is a member of the Central Architecture Group. She has
over 16 years of industry experience spanning Enterprise
Architecture, Technology Consulting, Presales & Solutioning, and
Individual Contributor roles. Her primary areas of interest include
Distributed Systems, Big Data and the JVM ecosystem at large.

Conclusion

Author Bio

References
[1] https://www.oreilly.com/library/view/distributed-systems-observability/

[2] https://elastic-stack.readthedocs.io/en/latest/e2e_kafkapractices.html

[3] https://prometheus.io/docs/introduction/overview/

[4] https://opentracing.io/

[5] https://zipkin.io/

[6] https://www.jaegertracing.io/

[7] https://github.com/opentracing/specification/issues/142

Observability in Cloud-Native Applications 14

