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Given the distributed auto-scaling nature, frequent deployments and the many 
potential points of failures and latencies of modern cloud-based applications in 
ephemeral environments; these systems are increasingly more complex to monitor and 
debug in production, thus making observability a fundamental requirement to cut down 
time spent on triage. With Metrics, Logs, and Traces forming the so-called “Pillars of 
Observability1”, this paper seeks to explore –

Traditional monitoring typically revolves around defining a few crucial metrics and 
having automated monitoring and alerts on any threshold violations on those metrics. 
These metrics serve as broad symptoms to indicate a larger problem in a specific part 
of the system. However, they provide limited help in nailing down the exact source or 
root cause, as they cannot be correlated with the appropriate log events. Tracing fills 
this very gap by helping replay and investigate what happened with an individual 
transaction or a group of transactions (e.g., a sudden degradation in a component) - 
thereby providing a built-in debuggability in production code execution, where a 
debugger cannot be attached. 

Monitoring looks out for failures that are anticipated and defined upfront, whereas 
observability is a broader and a more open-minded approach to navigate and discover 
the unknown unknowns too. A holistic approach includes health-check endpoints that 
report the status of running applications to monitoring tools that consume them, 
application and system metrics that can help in alerting anomalies, timestamped logs 
rich in context to help investigate the root cause of an issue, and context-rich tracing 
that can help correlate and debug distributed call traces to pinpoint exact sources of 
latencies and errors. 
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Logs
Logging refers to capturing timestamped events traditionally as free-form text, or as 
structured logs which are more machine-friendly and suitable for log indexing, search 
and analytics. Timestamps provide a global ordering of events to logs generated from 
disparate or distributed processes. Event data from all service instances are shipped to 
a single system for aggregated/centralized indexed storage, querying, analysis and 
processing. 

Unlike metrics, log entries can contain fields with high cardinality, which makes it 
possible to analyze logs and slice and dice on various dimensions to identify potential 
causes of issues. Logs are rich in context, and once aggregated, they support search 
and debugging at a very fine level of granularity over the entire request or transaction 
at once. Since logs are exhaustive and generally not sampled, they represent the 
totality of requests and can be used for auditing, billing (from metering logs), analytics 
for detecting frauds and attacks etc. Logging is also very easy to adopt. On the 
downside, compared to metrics, they are resource-intensive in their entire lifecycle of 
generation (as they are usually blocking), transmission, indexing and storage, querying 
and processing, to retention. They also increase with traffic or load conditions. Unlike 
traces, logs do not capture causal relationships between events, and hence may lose 
out on critical clues while investigating issues. The traceID should however be put into 
the MDC and made part of the log conversion pattern, to ensure consistent logging of 
the trace identifier in logs, which would in turn help in correlating logs with traces. 

Traces are request-centric and tell the complete story of a request or transaction, 
whereas metrics are system-centric, providing a high-level view of whether the system 
works as expected without answering the WHY. Logs provide a timestamp, ordering 
and the finest-grained detail about events. 

Logs – A log is a timestamped 
event of interest, with either a 
structured or a free-form 
payload attached that lends 
context to the event.

Metrics – A metric is a numeri-
cal measure of some system 
attribute under measurement 
at regular intervals of time.

Traces – A trace is a complex 
object that encapsulates an 
entire request’s journey 
through a distributed system as 
a causally connected series of 
events sharing a common 
traceID, the unique identifier of 
the trace.

Observability is hence comprised of 3 key pillars –

ELK (Elasticsearch-Logstash-Kibana)2 is a popular open source log management 
solution. Elasticsearch provides log storage with text indexing and search, Logstash or 
fluent provides log shipping (from hosts) and an optional transformation before writing 
to log stores like Elasticsearch. Kibana provides a visualization web interface for 
Elasticsearch data. For high-volume logging, a broker like Kafka is often used as a 
buffer before Logstash, to keep up with the spikes.
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MetricsLogging refers to capturing timestamped events traditionally as free-form text, or as 
structured logs which are more machine-friendly and suitable for log indexing, search 
and analytics. Timestamps provide a global ordering of events to logs generated from 
disparate or distributed processes. Event data from all service instances are shipped to 
a single system for aggregated/centralized indexed storage, querying, analysis and 
processing. 

Unlike metrics, log entries can contain fields with high cardinality, which makes it 
possible to analyze logs and slice and dice on various dimensions to identify potential 
causes of issues. Logs are rich in context, and once aggregated, they support search 
and debugging at a very fine level of granularity over the entire request or transaction 
at once. Since logs are exhaustive and generally not sampled, they represent the 
totality of requests and can be used for auditing, billing (from metering logs), analytics 
for detecting frauds and attacks etc. Logging is also very easy to adopt. On the 
downside, compared to metrics, they are resource-intensive in their entire lifecycle of 
generation (as they are usually blocking), transmission, indexing and storage, querying 
and processing, to retention. They also increase with traffic or load conditions. Unlike 
traces, logs do not capture causal relationships between events, and hence may lose 
out on critical clues while investigating issues. The traceID should however be put into 
the MDC and made part of the log conversion pattern, to ensure consistent logging of 
the trace identifier in logs, which would in turn help in correlating logs with traces. 

Metrics deal with aggregate-level measurements about a process (e.g., throughput, 
latency, data volumes), and they can be monitored over time to identify trends. Being 
numbers, they are very resource-efficient right from computation (even in distributed 
mode), to transmission, compression, storage, retrieval and retention. Since events are 
reduced to aggregates, the memory usage due to instrumentation remains constant 
w.r.t the number of events, being a function of the number of metrics being tracked and 
their dimensions. Once collected, they also lend themselves well to further statistical 
analysis, and for monitoring and alerting when critical thresholds are breached. On the 
downside, metrics lack context and though good overall “signals” of the system health, 
they lack the effectiveness that logs and traces can boast of in deeper investigation of 
issues. 

Metrics support dimensions/labels, which lend them somewhat of a relatively static 
“context”. Metrics and their dimensions may refer to instrumentation-side internals, 
e.g., an outbound RPC endpoint invocation that needs monitoring, HTTP classes of 
response codes (3XX, 4XX, 5XX) or, they may refer to the targets being scraped – e.g., 
the service, the cluster, the region, etc.

ELK (Elasticsearch-Logstash-Kibana)2 is a popular open source log management 
solution. Elasticsearch provides log storage with text indexing and search, Logstash or 
fluent provides log shipping (from hosts) and an optional transformation before writing 
to log stores like Elasticsearch. Kibana provides a visualization web interface for 
Elasticsearch data. For high-volume logging, a broker like Kafka is often used as a 
buffer before Logstash, to keep up with the spikes.

Figure 1: ELK Architecture (Source: http://elastic-stack.readthedocs.io)
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A metric is identified by the metric name and any (optional) set of labels. The observed 
values for the metric are reported at every time interval. The metric’s observed value, 
the labels that provide additional meta-information/context to the observation and the 
timestamp of the observation are stored in the metrics system. 

The number of unique values a label can assume is called its cardinality. e.g., for the 
metric api_hits_total, if one of the labels of interest is the HTTP method (GET, POST), 
the cardinality of this label is 2. Similarly, other dimensions of interest could be the 
region of execution – e.g., if the application is deployed in 3 regions, namely 
{ap-south-1, ca-central-1, and eu-west-1}, that makes the cardinality of this label as 3. 

For any metric, a time-series gets created for every applicable combination of its labels 
(over the label values) – 6, in the above example. Hence cardinality explosion is 
something to watch out for and avoid, by limiting labels to those dimensions of interest 
which can assume a small bounded set of values only (typically < 10). This helps in 
keeping the performance of scraping, indexing, and queries modest. Since high 
cardinality can overwhelm the timeseries database, most metrics systems impose 
constraints on cardinality. This limitation again requires complementing metrics with 
event logs, which have no cardinality limits as such.

Client instrumentation libraries typically expose health and metrics endpoints by 
default and provide OS and runtime engine/process-level statistics (e.g., cpu metrics, 
jvm metrics, logging metrics, up time metrics, file descriptor metrics) out of the box. 
Additionally, any key libraries like RPC libraries can be wrapped, instrumented and 
reused across applications/microservices, for engineering consistency.

Counters – represent an ever-in-
creasing measurement. e.g. execution 
or invocation count, error count. A 
typical monitoring use-case is to 
measure the rate of change of the 
counter, to observe the trend and use 
it for alerting. Counters reset to 0 
whenever the application restarts. 
System uptime itself can be a 
valuable counter. 

Gauges – represent a point-in-time 
snapshot of a given measurement 
that can go up/down over time. e.g., 
connection pool usage, 
mem/cpu/disk usage, #active_-
threads, #active_executions. It could 
even be a business metric like 
#active_carts on an ecommerce site.

Metrics are of two main types – 
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A leading open-source tool in the metrics space is Prometheus3, which supports multiple 
service discovery mechanisms to dynamically discover and scrape targets in orchestrated 
environments like Kubernetes. Applications can be instrumented using either Prometheus 
client libraries or other standard libraries, to expose metrics over HTTP (or, JMX). Exporters 
can be used to expose these metrics in a format that can be scraped by Prometheus. 
Prometheus periodically scrapes the configured targets to pull out the exposed metrics 
and persist them to a time-series database. Grafana provides a user-interface for 
query/visualization and for alerting on metrics. Prometheus also supports a 
push-mechanism for ephemeral targets, e.g., lambdas or batch jobs that run and die (not 
continuous applications). Push gateways can be used to push job metrics, e.g., last run 
duration, last run timestamp, last success timestamp (can be used for alerts) etc.

Request Rate – 
#requests/sec the service is 
serving. Similarly, in case of 
lambda functions, these 
would be #invocations/sec.

Request Error Rate - #failed_
requests/sec. For functions, this 
would be #errored_invocations/
sec.

Request Duration – duration of the 
request in a time unit. In case of 
functions, this would be the 
duration it took to process an 
event (including initialization time 
for the first event).

Utilization – proportion or, 
%age of resources used (e.g., 
cpu utilization, memory 
utilization, connection pool 
utilization, thread-pool utili-
zation). In case of functions, 
this could be the number of 
function instances running as 
a %age of the maximum 
concurrency allowed for the 
function.

Saturation – a measure of extra 
work that is queued up for servic-
ing, e.g., queue size. In the case of 
functions, the #invocation 
requests that are throttled can 
serve as a measure of saturation.

Errors – count of 
errors. 

Services are typically measured by RED  
(Rate, Error, Duration) metrics – 

Infrastructure and offline processing workloads are typically 
measured by USE (Utilization, Saturation, Errors) metrics – 
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Tracing4 provides a means to observe the behavior of an end-to-end request/
transaction, as it propagates across different endpoints of a distributed system. 
Conceptually, a completed trace is a transaction tree like what a distributed call graph 
would stand for, with child nodes representing different dependencies/endpoints that 
participate in the entire request processing, with each call timed individually. Hence 
traces are visualized as Gantt charts, representing service dependencies, start time 
(representation simplified to 0-based instead of a real timestamp here) and durations. 

Traces
Figure 2: Prometheus Architecture (Source: Prometheus)

Figure 3: Trace View
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Tracing points are usually the ingress and egress points in the services, where a request 
either enters or, exits a process boundary. Hence a request intercepting layer makes a 
good tracing point. For every outgoing RPC call, a new child span should be started and 
closed on call completion (for async calls, this is the on-complete callback point) and 
any exceptions encountered with the call should be logged to the errored span. In case 
of messaging, a new child span should be started by the message producer before 
publishing the message to the message bus and closed once the message is enqueued.
Services are instrumented with tracing libraries. At the system ingress boundary, like 
the API Gateway, a traceID is assigned to any incoming request as it’s end-to-end 
correlation id, which gets propagated along to all downstream services the request 
traverses through, via http headers/message headers etc. Any invoked downstream 
service links it’s spans with the respective parent span and trace, thus preserving the 
lineage. In-process propagation can be achieved via a Threadlocal variable used to 
embed the current span to make it is accessible anywhere in the execution path within 
the process. 

Once a span returns, the corresponding span gets completed, and tracing agents 
running on the services capture and send the spans across to a tracing backend/server, 
where a trace gets reconstructed and persisted to a pluggable storage (commonly 
Elasticsearch or, Cassandra). Thereupon, the trace can be queried over APIs or, via the 
Tracing WebUI. The Tracing WebUI supports searching and visualizing traces by traceID 
or, tags; and supports complex trace comparisons to examine the behavior of an 
anomalous trace vis-a-viz a normal one.

Figure 4: A real trace visualization (Source: Zipkin)

Figure 5: Zipkin Architecture (Source: Zipkin)
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Tags: Spans can be tagged (e.g., userID, cluster info, outbound endpoint invocation 
details, sql-query references, response/error codes), to support multi-dimensional 
queries in analysis of traces. Tags provide a mechanism for context-rich tagging of 
spans. 

Logs: Structured events, providing context around “what happened” with the span. 
These can be used to log important events about the span, e.g., an error or, any event 
that impacts the course of the request (e.g., a cache hit/miss, empty results from 
polling a remote system).

Trace: Represents the end-to-end execution path of a request flowing through a 
distributed system, as a DAG. A trace comprises of spans.

Span: Span is a named and timed operation in the request processing. Spans can, in 
turn, spawn nested child spans, even concurrent ones. Spans provide causal 
relationships within a trace. References model direct causal relationships between a 
child span and its parent, represented by edges in a DAG. A span may have zero (in case 
of root span) or many causal parents. Nested spans can either have a child-of  (typically 
one only) or, a follows-from kind of a reference with the parent span, depending on 
whether the caller expects a response (e.g., RPC protocol) or not (e.g., a fire-and-forget 
messaging protocol). A span also supports k-v tags, and 
structured logs.

Figure 6: Trace Object Model
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Tracing is an intrusive technique and harder to implement compared to logs and 
metrics, as it involves code instrumentation with tracing libraries like the open source 
Jaeger5 and Zipkin6 However, it beats blackbox techniques of monitoring by 
supporting rich contextual information and finer granularity within traces, which can be 
queried and analyzed for deep insights. Tracers are designed to be low-overhead, 
propagating only IDs in-band to the downstream services. Completed spans are 
reported to tracing servers out-of-band (async). Sampling (simple random or, adaptive 
sampling) of traces is another means of keeping the runtime overhead of tracing low in 
high-traffic systems. A downside of sampling, however, is that it limits visibility into 
infrequently occurring latency issues (e.g., p99 latency) or, rare failures. 

Without tracing, it would be difficult to observe the runtime behavior, understand 
causality, and isolate points of failures or latencies in a live distributed environment 
made of complex synchronous and asynchronous interactions between microservices, 
serverless compute components, and external systems. Beyond just a request-centric 
view, traces, when analyzed in aggregate, can uncover valuable insights into which 
service or resource is a bottleneck, and help in making informed optimization decisions 
about which services impact the end-user experience the most, which services are on 
the critical path etc. 

As there are human limits to how much manual debugging and analysis can practically 
be done on traces, it is useful to build analytics on these rich volumes of data to 
discover patterns versus outliers, establish correlations and derive insights which 
would otherwise be buried under individual traces. Common analytics use-cases 
include service dependency graph, critical path analysis, error analysis, latency analysis, 
anomaly detection etc.

Features can be computed out of individual traces e.g., total latency of the trace, trace 
start time, no. of spans in the trace, no. of outbound network calls in the trace, entry 
point of the root span, the client type (web client, android app, partner applications etc.), 
origin of the request, server region etc., which can be fed to an ML model e.g., an 
anomaly detection model, to flag anomalies. These features can be computed in near 
real-time and can even be used to monitor trends. Tracing can also contribute to KPIs 
like the end-to-end transaction processing time in a distributed system.

Dependency graph reconstructs the downstream dependencies of each service, thereby 
representing the totality of the architecture in action. The dependency graph can help 
visualize how exactly requests flow through the entire service landscape. Error analysis 
can help with classes of errors and error stats per service. Latency analysis can help 
pinpoint latency issues between inter-service calls. Critical path analysis can help in 
optimization efforts, by identifying spans that are bottlenecks in the end-to-end 
request execution and hence should be addressed first to shorten the trace execution 
time.

Analytics
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For critical path analysis, a DAG of the trace would be the starting point. A gap7 in the 
Open Tracing specification is how to model sibling relationships that denote more of a 
sequencing constraint (a preceding sibling must finish before the following sibling can 
start) than a causal relationship. In the absence of a formal support for this kind of 
reference type within the OpenTracing model, a custom workaround needs to be 
employed e.g., by introducing a special custom tag (say “next-of”) on spans to hold a 
reference to any preceding sibling spans that must be sequenced right before it. When 
the DAG is constructed, apart from the regular child-of and follows-from edges, edges 
should be generated for this otherwise missing reference type as well. The diagrams 
that follow depict the resultant DAG corresponding to the trace in Figure 3, and its 
respective linearized version.

Figure 7: DAG View of Trace

Figure 8: Topologically Ordered View of Trace
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Trace-level critical paths can be further analyzed by grouping them on root span 
endpoints (application entry points) to arrive at critical paths globally. This can be 
computed at the batch processing layer using the MapReduce paradigm.

The tracing infrastructure can include Kafka as an intermediate buffer between the 
span collector and storage. Apart from absorbing traffic spikes, Kafka can enable a 
real-time pipeline for streaming window-based aggregations on the trace either based 
on heuristics or, a predetermined time interval to allow for all spans of a given trace to 
be “seen” before computing features on it. Historical analysis on traces can be run to 
incorporate any new feature introduced. A batch data store like Hadoop can enable an 
analytics pipeline on historical data. The output of the analysis could be written to 
various kinds of sinks like a TSDB, an event bus (for alerting), or the tracing store 
(Elasticsearch or Cassandra) itself, depending on the nature of the analysis. Apache 
Flink and Apache Spark Streaming/Batch are the commonly used open-source 
frameworks for Big Data Analytics, with the same program reused in real time and 
batch mode.

The critical path can be obtained by traversing the graph in a forward pass to compute 
the early start (ES) and early finish (EF) for each node, and a backward pass to compute 
the late finish (LF) and late start (LS) for each node. 

All nodes with 0 slack (LF – EF) indicate tasks that cannot be delayed without impacting 
the overall trace execution time. This sequence forms the critical path, as highlighted in 
red.

The obvious critical path in a DAG is the longest path in time from the origin node to the 
terminal node. All spans that fall on this path have a slack of 0. This can be computed as 
follows – 

Topologically sort the DAG, G = 
(V, E). This would yield the 
vertex order {A, B, C, D, E, F} 
with appropriate edges 
between them.

Recursively find the longest 
path from the origin node to 
the terminal node. For vεV, this 
is obtained by computing the 
max path cost (in time) from 
the origin node to v over all 
predecessor edges of v. 

The longest path thus 
obtained is the critical path.

01 02

03 04

ES: earliest a span can possibly start, 
considering predecessor spans

EF (= ES + span duration): earliest a 
span can possibly finish, considering 
predecessor spans

LF: latest a span can finish without 
delaying the trace finish

LS (= LF – span duration): latest a 
span can start without delaying the 
trace finish
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Log analytics pipelines too commonly use Kafka as the event bus, to enable real-time 
complex queries and analytics on streaming log data. A lot of log analytics is also done 
in batch mode.

OpenTracing and OpenCensus are two competing 
open standards for observability, each with a 
strong community. Unlike OpenTracing, 
OpenCensus collects and exports metrics too. 
OpenTelemetry is an evolving standard that merges 
these two standards into a single instrumentation 
standard that aims to standardize how telemetry 
data gets collected and sent to backend telemetry 
platforms. The OpenTelemetry backend is 
pluggable and compatible with leading backends 
supported by either project today. OpenTelemetry 
offers backward compatibility and an easy 
migration path for both the projects while setting 
forth a unified set of specifications and libraries for 
cloud-native observability telemetry. 

Future Directions

Figure 9: Trace Analytics Pipeline
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Response time is critical to any business, as latency or reliability issues in end-user 
experience can significantly impact brand reputation and adoption, thereby leading to a  
loss in revenue. While traditional monitoring may suffice for a service landscape that is 
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architectures, tracing becomes a must. Wherever observability is carefully designed for 
in software, it offers a deep capability for exploration and root-cause analysis in a live 
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leads to more robust software over time.  
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