
Technical Whitepaper

1. Integration overview 3
 1.1.1 Need for tool integration 3
 1.1.2 Categories of tools / integration 3
1.1.3 Key drivers for integration 4
1.1.4 Key Benefits of integration 4
1.1.5 Common techniques to achieve tool integration 4
 File based Integration 5
 Email based Integration 6
 SOAP (Simple Object Access Protocol) based API integration 7
 REST (Representational State Transfer) based API integration 8
 Direct Database Connection Integration 8
 Middleware application 9
 Hub-Spoke mechanism 9
 Service-Oriented Application Integration (SOAI) 10
 Orchestration 10
 Webhooks 11
 1.1.6 Application Integration Challenges 11
2. Environment overview 12
2.1.1 High-level steps involved in typical integration 12
 2.1.2 High-level pre-requisites for enabling integration 12
3. Integration Design considerations 13
 3.1.1 General design considerations when defining any integration 13
 3.1.2 Technical design factors involved while defining integration 13
3.1.3 Identification and Communication of Technical Limitations 14
4. Integration Development Standards 14
4.1.1 Naming conventions 14
5. Integration Validation 14
6. Monitoring Integration 15
6.1.1 Integration Health Check 15
7. Integration Troubleshooting 16
7.1.1 Troubleshooting Basics 16
8. Best Practice Guidelines 16

Contents

02Technical whitepaper How to Approach Tool Integrations

Integration overview

Need for tool integration

Categories of tools/ integration

Tool Integration is an effective technique of integrating tools of the
same or different classes to build a robust tool framework to support
various business operations.

There are multiple tools specialized in performing certain day-to-day operations at an enterprise level and deliver the
required results. These tools can be anywhere from traditional or legacy applications to modernized applications and
support various business processes.

If the tool is self-sufficient/specialized to cater for the business processes and does not require sharing the data/
information across any other tool, in that case, there is no need for integration.
However, there may be a scenario where the data generated/submitted in one tool/application requires an external
application to perform extended task owned by multiple groups in an organization. Such scenarios demand the integration
of other tools/applications.

The other typical business needs could be

Standardization of processes
across multiple groups

External audit compliance
requirements

Acquisition/merger of two
different sub-units or enterprises

Adoption of new process by the
organization as part of new

initiatives

Process upgradation

The tools involved are broadly categorized into the below

SaaS-based
tools/applications

Web-based/customer
end-user portal applications

Modernized applications
(server-less)

Open-source
tools/applications

Homegrown
tools/applications

01

04 05
COTS tools/applications

06

02 03

03Technical whitepaper How to Approach Tool Integrations

Key drivers for integration

Common techniques to achieve tool integration

Key Benefits of integration

Uni-directional integration

Middleware based tool integration

Bi-directional integration Point-to-point integration

Type of integrations mainly include

Information needs to flow from
one tool/application/system into

another environment

The process involves heavy usage
of swivel seating and decreased

productivity
Keeping near real-time sync

between the two tools

Users will be able to view
 consistent data across tools/

application at any given
point in time

Enhanced process automationSeamless information exchange
between tools/applications in the

real-time

Any change getting introduced to
the business processes as part of
standardization/upgradation of

existing processes

Avoid manual errors while
performing repetitive tasks across

multiple tools/applications

01

04

02 03

04Technical whitepaper How to Approach Tool Integrations

There are lots of ways to achieve tool
integration. Each of these below listed
common approaches have their own pros and
cons. The most optimal approach could be
taken up for implementation after a thorough
evaluation.

File based Integration

Pros

This approach is generally taken up with no need for direct connection
between the two tools. The integration is achieved by placing the
required file in a pre-determined folder location/agreed format at a
scheduled time of the day by the tool and is accessed by the other tool

Less expensive solution with
quick time to implement

CSV format is easier to access,
more readable and could be

validated by end-user

No need of APIs and custom
development

Cons

Data sync between the two tools
is not real-time

Lesser security as data resides in
a flat file without encryption

Lack of Data validation leading to
import of corrupt data

Application A
Application B

Common/
Shared location

accessible by both
applications

Export Data into File
(.CSV) format

Import .CSV DataAutomated jobs
to pull/push data from/to the file

File based integration

05Technical whitepaper How to Approach Tool Integrations

https://www.happiestminds.com/services/it-security-services/

Email based Integration

Certain tools with limited capabilities may have email-based
integration based on the emails received from the external tool. Certain
actions could be triggered to perform the required automation and
preferred in unidirectional with lesser complexity.

Pros

Ready templates lead to faster
implementation

Most of the tools with basic maturity and features
support email integration

Cons

Delay in receiving emails could be an area of
concern for processes that are having very short

cycle time

Handling of special scenarios like email signatures,
logos, URLs, and type/count/size of attachments could

pose challenges

There can be two categories

Inbound

Generally, the receiver user/domain is registered in the
tool to identify the source. Email subject and body can be
mapped to extract the content. Any specific business
logic can be developed in the available inbound actions to
achieve this integration and perform desired actions.

Emails coming into the tool

Outbound
Emails going out of the tool

06Technical whitepaper How to Approach Tool Integrations

SOAP (Simple Object Access Protocol)
based API integration

SOAP leverages XML and advocates a strong messaging framework.
The service operations involved are defined with the appropriate XML
request/response structure. There will be input, and output parameters
encapsulated in the WSDL (Web Service Description Language). The
tool that exposes the API is referred as a publisher, and the one that
consumes is called consumer of the web service. SOAP request body
contains Query parameters, Path parameters, Form parameters,
Header parameters and Body parameters

Pros

SOAP can communicate over any
transport protocol primarily uses XML

Cons

Even if there is a slight change to the
API such as a single parameter, the

entire WSDL will undergo changes and
thereby resulting in recompilation of

changes to the client application

Application A
Application B

SOAP Envelope

SOAP API
based integration

Bo
dy

 W
SD

LHeaderHTTP Protocol

SOAP Request Message
(HTTP)

SOAP Response Message
(HTTP)

07Technical whitepaper How to Approach Tool Integrations

Pros

Simple to use and low utilization of
resources

Handling of different format of data

Pros

Common interface supporting most of the
popular databases and widely used with

built in functions, pre-configured and
other capabilities/ connectors to establish

the database connection

Cons

Not able to maintain session

Direct database
connection integration

e.g.- JDBC/ODBC (Java Data Base Connectivity/Open Data Base Connectivity)

ODBC (interconnector) act as a middleware between databases and applications. It
provides database independence by using the interaction of the driver and the
application on the corresponding application platform and the corresponding database
to avoid the direct call to the database.

Cons

Performance issues with larger volume
of datasets

08Technical whitepaper How to Approach Tool Integrations

REST (Representational State
Transfer) based API integration

Application BApplication A

{ REST:API } integration

RESOURCE URI

JSON

GET POST PUT DEL

Formats supported

REST MethodsREST Request
Message (HTTPS)

REST Response
Message (HTTPS)

RSS XML

Protocol Host / Domain Name Port Application context Version Resource Parameter

https: // localhost 8080 / / /Restfulservices Users / {id}V1:

Middleware application
e.g.- Talend, JBoss, Mulesoft

The middleware acts as a system that communicates with both the
systems involved to perform any translations of data and ensures
seamless information and integrity.

This provides a modular approach when there are multiple endpoints to be integrated and
leads to standardization.

Pros

Enables process streamlining and
efficiency improvisation

Cons

System performance could be an area of
improvement to optimize the processing

time and have real time information

Hub-Spoke mechanism

ENTERPRISE HUB
MESSAGE BROKER

Application A Application B

Application DApplication C
Spoke Spoke

SpokeSpoke

Hub - Spoke integration modelPros

Ability to handle larger volume of traffic
with better architecture provides the ability

to easily scale with robust framework

Cons

Any design changes to the hub will lead to
complex re-work due to the centralized

architecture

09Technical whitepaper How to Approach Tool Integrations

Pros

Provides high reusability with a common
business logic and methods leading to

shortened development cycles

Pros

Provides the ability to stitch the various
process across heterogeneous platforms/

toolsets using the workflow

High amount of automation possible
including self-healing and other L0/L1 tasks

activities

Cons

Generally, the processes are not well
documented

Process needs to be completely
standardized without any gaps before

taking up the automation tasks

Cons

Typically, consistent technology and
architecture are rarely observed in

enterprises due to the various platforms
and tools

Service-Oriented Application
Integration (SOAI)

Orchestration

Identified standard services that are being offered from a centralized
server reusing the objects and methods

This is the most advanced level of integration with usage of automation
of various business processes using multiple tools

10Technical whitepaper How to Approach Tool Integrations

Webhooks

Operation

Event

Action

Application A Application BWebhooks Payload Message
(HTTPS POST request)

Webhooks Message (HTTPS
POST Response)Webhooks integration

Certain web applications may not directly expose or consume APIs and instead encourage the use of webhooks that are
event based.

Pros

Instant data is delivered using webhooks
almost on a real-time basis with
minimum utilization of resources

Compelling features and simple to
implement

Cons

While the primary focus of Webhooks is on
delivering data in real-time, still there are

improvements needed on application error
scenarios

Application Integration Challenges

Lack of OEM Vendor support for
custom integration

Lack of enterprise-grade API
made available by OEM/product

vendor for various actions

Lack of development and test
environments for testing the

integration before production release

Lack of extensive/detailed
documentation on available APIs

from the tool vendor

Lack of clarity in business
requirements between the

parties involved

Requirements getting defined
turn agile, leading to scalability/-

maintainability issues

Infinite looping in bi-directional
integration due to the absence of

defined business rules

01 02 03

05 06 07

04

11Technical whitepaper How to Approach Tool Integrations

Environment overview

It is imperative to understand the business objectives that need to be achieved by involving all the relevant
stakeholders/parties from the customer side, including tool and process experts, right at the very outset of the initiation
phase. This can be achieved through workshops to understand various components in the current/AS-IS tools architecture
in the customer environment, current processes, and workflow. The process in the future state will have to be
documented and socialized with the stakeholders prior to tool integration.

This will go a long way in building the required tools/process integrations by taking necessary measures for any course
corrections during design considerations in the future state. The typical outcomes of these working sessions will be data
flow diagrams in Visio or a similar format.

High-level steps involved in typical integration

High-level pre-requisites for enabling integration

Gathering the business
requirement

Tools for validation of integration
endpoints

Maintainability - Checklists and
SOPs

01 02 03

Key parameter
Dedicated system/service accounts with credentials and appropriate level of permissions such as Tool
admin/API admin for accessing endpoints with an ability to perform Read/Write operations

Identification of lower instance, preferably such as Dev/Staging and leverage it for development/
testing activities

Identification of appropriate authorization and authentication mechanisms of the tools

Configuration of service accounts

Firewall port opening between the applications (if any)

Identify the various actors in the process, triggers, qualifiers, actions to be performed and business
logic involved for both the positive and negative use case scenarios

Understanding the limitations of the tools at early stages by going through the product documentation
or consulting with the product SMEs

Identification of the required skills that include development exposure and usage of APIs (publishing
and consumption), level of scripting involved, validation tools and the cross-training/upskilling of team
members getting involved

Both the tools involved must be able to perform API calls as well as parse and store the response
received, including error scenarios

12Technical whitepaper How to Approach Tool Integrations

Postman SOAP UI

Integration Design
considerations

Understanding the current volume of transactions and forecasted load that needs to be supported by integration. If a high-volume
transaction is foreseen, we could explore the multi-threading features of the application.

Designing/optimizing the To-be process and workflow involving the various support groups is crucial.
Understanding and documentation of the business use cases with relevant events and conditions
Understanding the tool family – If the tools/applications are Homogeneous (i.e., from the same OEM vendor), there may be native
integrations in the form of pre-configured APIs with minimal changes.
For heterogeneous tools/applications, there may be built-in or custom plugins available on the source and target application.

Determine the frequency of data sync between the source and the target (e.g., Real-time, Scheduled interval)
Complete flow of data between source and the target application
Feasibility of storing of data in source and the target application
Involvement of any middleware tools/connectors/plugins/third party apps
Any complex non-functional requirements around API transaction that require multiple calls either in sequence or in parallel.
e.g., In certain rare scenarios, output from the first API call may be the input for the subsequent API call(s)

General design considerations when defining any integration

Technical design factors involved while defining integration

Type of integration – Uni-directional/ Bi-directional Understanding the integration protocol for communication –
(e.g.-: REST/SOAP) supported by source as well as the target application

Understanding the source and target tool capabilities

Authentication mechanism (e.g., - Basic, OAuth, SSL,
KeyStore, Mutual Authentication and others)

Evaluation of accelerators such as pre-built connectors from the
vendor or third party

Security restrictions, if any, such as firewall rules, VPN and Cloud

Field mapping between the tools Handling of Special fields Special scenarios Underlying business rules

Pull and push mechanism for handling data

Controlled access to APIs to read, write, query, and
delete operations

APIs made available out of the box and documenting any
limitations on the source and target side

Special fields (e.g., date, notes, comments, attachments,
unstructured data formats, email signatures, reference
URL links and others)

System date formats configured on the source and target side

Simultaneous updates to the same record from the
front end-user interface and external API calls will
lead to locking the record/table at the database
level. By leveraging webhooks or any other similar
technologies, locking mechanism can be handled

Ability to invoke required APIs on the defined user/system events
for only refined/ required filter criteria

Message format supported by source and target (e.g.- XML, JSON)

01 02

03

04 05

06 07 08 09
Error handling Determining/Defining

audit mechanism
Any other design
standards/Best
practices

The handiness of test data and test
scenarios10 11 12 13

13Technical whitepaper How to Approach Tool Integrations

Identification and Communication of Technical Limitations

Naming conventions

Based on the detailed assessment/workshops/POC results and by consulting product SMEs or OEM vendors, key technical
limitations can be identified/foreseen. In such cases, it is crucial to communicate these limitations to all the stakeholders
involved in setting clear expectations before the implementation phase. This would minimize the business impact, project
costs, development efforts, and an alternative approach could be postulated.

Determining the name of user accounts/service accounts - This may have to be consulted with the tool administrators to
maintain consistency across the board.

The naming of business rules/events/ triggers will ensure that the code is maintainable and comes in very handy during any
troubleshooting.

A dedicated group of system
testers with a combination of
pilot users

A separate UAT environment to
catch any issues early before
getting released to production

Complete list of test cases that
cover both positive and negative
scenarios

Integration Development
Standards

Integration Validation

01 02 03

Each test case should, to a
minimum, capture the various
actors initiating the process,
required triggers/events, exact
qualifiers, and actions to be
performed, user notifications

Visual representation (in any
form such as Visio/Flowchart)
capturing the data information
flow

Stitch the integration test cases
into regression test case suites
as applicable to cover overall
functionality

04

Test data needed for basic
validations/ troubleshooting
needs to be arrived at based on
any past ticket information to a
near-real-time validation

07

05 06

14Technical whitepaper How to Approach Tool Integrations

Integration Health Check

Troubleshooting Basics

Monitoring Integration

Integration
Troubleshooting

Validate services are up and
running

Start/Restart the service if it is
not in running status

Validate CPU and memory
utilization Restart-Service if
CPU/Memory utilization is more
than the configured threshold
percentage

01

Validate disk space and ensure
the minimum amount of disk
space is available If no sufficient
space available, clean up any
logs and restart services by
following Standard Operating
Procedure (SOP)

04 Build appropriate reports as
necessary to track any issues
proactively

05

02 03

Ensure authentication and
connectivity

Visual representation (in any
form such as Visio/Flowchart)
capturing the data information
flow

Listing/Documenting of
commonly occurring issues01 02 03

Referring Log files – best
practice error message and
description

Standard Operating Procedure
capturing steps

Handling timeout issues04 05 06

15Technical whitepaper How to Approach Tool Integrations

Best Practice
Guidelines

Business Contact

About Happiest Minds Technologies
Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables digital transformation for enterprises and technology providers by delivering seamless customer experiences, business
efficiency and actionable insights. We do this by leveraging a spectrum of disruptive technologies such as: artificial intelligence, blockchain, cloud, digital process automation, internet of things, robotics/drones, security,
virtual/augmented reality, etc. Positioned as ‘Born Digital . Born Agile’, our capabilities span digital solutions, infrastructure, product engineering and security. We deliver these services across industry sectors such as
automotive, BFSI, consumer packaged goods, e-commerce, edutech, engineering R&D, hi-tech, manufacturing, retail and travel/transportation/hospitality.

A Great Place to Work-Certified™ company, Happiest Minds is headquartered in Bangalore, India with operations in the U.S., UK, Canada, Australia and Middle East.
www.happiestminds.com

AUTHOR BIO

Detailed project plan with clear
tasks/activities and milestones

Defined RACI (Responsible
Accountable Consulted and
Informed) matrix for the various
teams involved

Each developers’ artifacts, such
as checklists, templates need to
be reviewed and certified by the
Centre of Excellence

01 02 03

Follow development and design
standards

Detailed review of a communi-
cation plan with stakeholders
prior to rollout

Start with a Proof of concept
and gradually expand instead of
the big bang approach

04

Inputs from previous implementations
as lessons learnt and success stories07

05 06

Chethananand N K is a seasoned ITSM professional with diverse experience of leading
enterprise-level engagements in ServiceNow, BMC Remedy and other ITSM tools/
solutions and successfully delivered complex integration projects to automate business
processes.
He is currently working as Sr. Practice Manager for ITSM/ ITOM toolsets portfolio at Happiest
Minds Technologies. He is actively involved in carving out the use cases during the solutioning
and planning phase in large infrastructure transformation projects. Chethananand is also
responsible for architecting solutions and road map discussions to ensure smooth transitioning
of services and steady-state operations.

Chethananand N K
Senior Practice Manager, ITSM

16Technical whitepaper How to Approach Tool Integrations

https://www.happiestminds.com/services/it-service-operations-management/
https://www.happiestminds.com/services/managed-infrastructure-services/

