
DevOps Management
with GitHub

Table of Contents
Introduction to GitHub

What is GitHub?

Why GitHub?

Understanding the term Git and GitHub

Features of GitHub

Issues

Notifications

Branches

Commits

Pull Requests

Labels

Actions

Cloning and Forking

Build and deploy through GitHub Actions

Action Logs of Build

Artifacts & Artifact Storage

GitHub Actions to deploy to Azure

Control execution

GitHub Secrets

Deploy to Microsoft Azure using GitHub Actions

Create and delete Azure resources by using GitHub Actions

Main Benefits of using GitHub

Conclusion

Author Bio

03

03

03

04

05

05

05

06

06

06

07

07

08

09

09

09

10

10

10

11

11

12

13

13

Introduction to GitHub

What is GitHub?

Why GitHub?

Since its inception in 2008, GitHub has continuously transformed the way people code,
making it easier to collaborate and develop elegant, disparate solutions for the market.
GitHub has grown and evolved from a version control system to a social utility for
programmers and finally to the place were code lives online.
It is a blessing in disguise for software developers by creating the most comprehensive
open-source platform facilitating cloud storage for source code, codeshare, networking,
publishing services, and code talks. Today millions of people around the globe use these
repositories. GitHub has achieved an incredible growth, and collaboration with Microsoft
has scaled it to a new height which has helped many users efficiently maintain complex
codebases.

This whitepaper provides you with a detailed guide about GitHub, and how you can
effectively deploy and manage your code using Git & GitHub.

GitHub is a well-known web-based open-source platform where users host git repositories.
It is a highly used software version control and is helpful when more than one person is
working on a project.

GitHub provides a centralized repository for the software development team to upload, edit,
and manage code files to help them build a website. Everyone can update their codes
simultaneously when working on the project. GitHub allows us to document the changes in
codes files and reflect them in a systemized manner to avoid disruption between any of the
files uploaded.

The GitHub centralized repository allows us to steer clear of all the confusion, and therefore,
working on the same code becomes effortless and free.

The most important feature of GitHub is “Forking”, copying a repository from one user’s
account to another. This helps you to take a project that you do not have right access to and
modify it under your account. If users want to make changes, they will need to share it with
the original owner by sending a notification called a “Pull request”. Then the owner, with one
click of a button, can merge the changes found in the repo with the original repo.

These three features – Fork, pull request, and merge – is what made GitHub more powerful.

DevOps Management with GitHub 03DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Understanding the term Git and GitHub
Git is a Distributed Version Control System (DVCS) that helps multiple developers and other
contributors work on the same project. It possesses a significant feature to work with one or
more local branches and helps them push to a remote repository. Git is responsible for
everything GitHub that happens locally on the user’s computer. Key features of Git include:

GitHub is a cloud platform that consumes GIT as its core technology. It streamlines the
collaboration process and provides a website, command-line tools, and overall flow that
allows software developers and users to work together. GitHub is a remote repository.

Installation and use on
user’s local machine

Handle and monitor
version control

Support and monitor
branching and policies

DevOps Management with GitHub 04DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Disclaimer: All logos are the property of their respective owners

Features of GitHub
Issues

Notifications

Issues are where most of the communication between a client and the development team occurs.
An issue can be created to discuss a broad set of topics, including bug reports, feature requests,
documentation clarifications, etc. Once an issue is created, it can be assigned to owners, labels,
projects, and milestones. Developers can also associate issues with pull requests and other
GitHub items to provide future traceability.

GitHub offers notifications for virtually every event that takes place within a workflow. These
notifications can be fine-tuned to meet all your preferences. As you can subscribe to all issue
creations and edits on a project, or you can just receive notifications for issues that mention you.
You can also decide whether you receive notifications via email, web & mobile, or both.

DevOps Management with GitHub 05DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Branches

Pull Requests

Branches are the preferred way to create changes in GitHub Flow. They provide isolation so that
multiple people may simultaneously work on the same code in a controlled way. This model
enables stability among critical branches, such as “main”, while allowing complete freedom for
developers to commit any changes they need to meet their goals. Once the code from a branch is
ready to become part of the main branch, it may be merged via “pull request”.

Commits
A “commit” is a change to one or more files on a branch. Every time a commit is created, it is
assigned a unique ID and tracked along with the time and contributor. This provides a clear audit
trail for anyone reviewing the history of a file or linked item, such as an “issue” or “pull request”.

A “pull request” is a way used to signal that the commits from one branch are ready to be merged
into another. The developer submitting the pull request will request one or more reviewers to
verify the code and approve the merge. These reviewers can comment on changes, add their
own, or use the pull request for further discussion. Once the changes have been approved (if
approval is required), the pull request's source branch (the compare branch) may be merged into
the base branch.

Source: GitHub

DevOps Management with GitHub 06DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Labels
Labels provide a way to categorize and organize issues and pull requests in a repository. As you
create a GitHub repository, several labels will automatically get added for you, and you can even
create a new one as well.

Actions
GitHub actions provide task automation and workflow functionality in a repository. Actions can be
used to streamline processes in your software development lifecycle and implement continuous
integration and continuous deployment (CI/CD).

Automated
processes added to
your repository.

Examples of Labels include:

GitHub Actions are composed of the following components:

Bug Documentation Duplicate Help wanted Enhancement Question

Workflows
A set of steps that
execute on a
runner.

Jobs

An activity that
triggers a
workflow.

Events
A task that can
run one or more
commands
(actions).

Steps
Server that has the
GitHub Actions
runner application
installed.

Runners

Standalone
commands that can
be combined into
steps. Multiple
steps can be
combined to create
a job.

Actions

DevOps Management with GitHub 07DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Cloning and Forking
GitHub has vast features to provide multiple ways to copy a repository so users can work on it.

Cloning of a Repository
Cloning a repository will make a
duplicate copy of the repository and
its history on the user’s local
machine. If the user has the right
access to the repository, they can
push changes from their local
machine to the remote repository
(origin) when it is completed. Users
can use the Git clones command or
GitHub to clone the repository.

Forking of a Repository
Forking a repository will make a
duplicate copy of the repository in
the user’s GitHub account. Once
users have successfully forked a
repository into the GitHub account,
they can clone it to their local
machine. Forking allows you to
make changes to a project without
affecting the original upstream
repository. Users can create a “pull
request” to contribute to the
upstream repository from your
forked repository. Git commands
can be used to ensure that the local
copy stays synced with the
upstream repository.

DevOps Management with GitHub 08DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Build and deploy through
GitHub Actions
GitHub Actions can be used to implement continuous integration (CI) for code that is maintained
in GitHub repositories. CI is the practice of using automation to build and test software every time
a developer commits changes to version control. CI helps teams discover issues early in the
development process and fix them quickly.

Several features are under development, and you must make sure the team can build and test
them easily so that each one can be quickly added to the website. Because the code for the
project is stored in a GitHub repository, you can use GitHub Actions for your CI project.
You can create a workflow from a template — that template has common jobs and steps
pre-configured for the automation you are implementing.

Action Logs of Build
Each time the workflow runs, it provides log information indicating whether your workflow
deployment was successful. If your workflow is successfully deployed, you will notice a check-
mark on the right; if your workflow fails, you will see a red ‘X’ symbol. Then, you can investigate
the reason for those errors/failures and fix them.

Artifacts & Artifact Storage
Workflow produces artifacts along with log entries. This artifact can be uploaded to storage using
the action actions/upload-artifact and downloaded from storage using the action actions/down-
load-artifact. Storing an artifact helps to preserve it between jobs. Each job uses a fresh instance
of a VM, so you cannot reuse the artifact by saving it on the VM. If you need your artifact in a
different job, you can upload the artifact to storage in one job and download it for the other job.
Artifacts are stored in storage space on GitHub. The space is free for public repositories, and
some amount is free for private repositories depending on the account. GitHub stores your
artifact for 90 days.

DevOps Management with GitHub 09DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

GitHub Actions to deploy to Azure
Once you have completed the workflow for CI using GitHub Actions and the Artifact is generated,
then, with reference to the artifact, you can deploy it to Azure using GitHub features like:

Control Execution
Many developers want to run a workflow if some condition is true. GitHub workflows provide the
‘if’ conditional for this scenario. The conditional uses an expression that will be evaluated at run
time. For example, we want to run this workflow if a staging label is added to the pull request.

GitHub Secrets
GitHub Secrets is a secure place to store sensitive information that your workflow needs. The
GitHub Action must have permission to access the resource to deploy to an Azure resource. You
will need to store Azure credentials in plain sight in the workflow file. Instead, you can store your
credentials in GitHub Secrets.

To store any information in GitHub Secrets, you can create a “secret” on the portal. You can use
the name of the “secret” you created in your workflow wherever you need that information.

ChatOps uses chat clients, chatbots, and
real-time communication tools to execute
tasks. When you leave a specific comment
in a pull request, that can kick off a bot.
That bot might comment back with some
statistics or run a workflow.

Creating a trigger CD workflow with ChatOps:

Different labels can start different
workflows. Add a staging label to begin a
deployment workflow to the staging
environment or add a spin-up environment
label to run the workflow that creates the
Microsoft Azure resources you will deploy.

Using labels in your pull request:

DevOps Management with GitHub 10DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Deploy to Microsoft Azure using
GitHub Actions

Create and delete Azure resources by
using GitHub Actions

The GitHub Marketplace has several actions that help you automate Azure-related tasks.

You can search and browse GitHub Actions directly in a repository's workflow editor. You can
search for a specific Action from the sidebar, view featured Actions, and browse featured
categories.

CD is an automated process when you use the infrastructure as code to create and delete the
environment you want to deploy. GitHub Actions can automate these tasks on Azure, and you can
include these actions in your workflow. To avoid extra charges, you must delete resources you
have created if it is of no use.

One option is to create a new workflow with two jobs, one that spins up resources and deletes
them. Then, use a conditional to run only the job you want. In this example, the conditional looks
for a label in the “pull request”. It runs the set-up-azure-resources job if the label spins up the
environment and the destroy-azure-resources job if the label is destroyed.

In your repository, browse to
the workflow file that you
want to edit.

To find an Action:

Click the edit icon in the
upper right corner of the
file view.

Use the GitHub marketplace
sidebar to the right of the editor
to browse actions.

DevOps Management with GitHub 11
Deploy to Microsoft Azure using Deploy to Microsoft Azure using Deploy to Microsoft Azure using Deploy to Microsoft Azure using

DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Remove workflow Artifacts from GitHub
By default, GitHub provides you 90 days of storage time for your build logs and uploaded artifacts
before deletion. This retention period can be customized based on the type of repository and the
usage limits set for your specific GitHub product. There is much more information regarding
usage limits, artifact retention, billing, and administration. If you are reaching your organization’s
storage limit for GitHub artifacts and packages, and you want to remove old artifacts without
increasing your usage limits and blocking your workflows, you can reclaim used GitHub Actions
storage by deleting artifacts before they expire on GitHub

As we all know, almost every open-source platform uses GitHub for managing their projects. If
your project is open source, then using GitHub is free. It includes wiki and issue tracker to make it
easy to include more in-depth documentation and feedback about your project. It will be
uncomplicated for you to contribute; you will just need to fork a project, make edits as per your
requirement, and create a “pull request” to merge using the GitHub web interface.

You can do this in the following two ways:

Main Benefits of using GitHub
The GitHub Marketplace has several actions that help you automate Azure-related tasks.

GitHub makes it easy to contribute to your open-source projects

GitHub integrates with common platforms like Amazon and Google cloud, services like Code
Climate to track your feedback, and can highlight syntax in 200 different programming languages.

Integration Options

GitHub allows you to showcase your projects in front of the public. GitHub is one of the largest
coding communities around the world, so it provides wide exposure to your project.

GitHub is a repository

If you are a developer who wants to attract more recruiters to your profile, then GitHub is the
best tool you can rely on for this purpose. This is because most companies investigate the GitHub
profiles when they search for new talents. So, if you are not from the best-ranked college/univer-
sity but have a well-versed profile on GitHub, you will have an amazing chance to showcase your
talent and get shortlisted and hired by top companies around the world.

Showcase your work

01

02

03

04

DevOps Management with GitHub 12DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

Manually delete Artifacts
from your repository

Change the default
retention period

GitHub provides you with excellent exposure to receive great documentation. The help section
and guides have articles on topics related to git that you may need and refer to for any project.

Documentation
05

Markdown allows users to use a simple text editor to write formatted documents. GitHub has
revolutionized writing by channeling everything through Markdown: from issue tracker, user
comments, and much more.

Markdown
06

When multiple developers collaborate on a project, it’s hard to keep track of all revisions—who
changed what, when, and where those files are stored. GitHub takes care of this issue by keeping
track of all the changes that have been pushed to the repository.

Track changes in code across different versions
07

Conclusion
Git is an open-source version control system used for source code management in software
development and is rapidly gaining ground. Git is not specific to Azure DevOps – a collaborative
software development tools set. In fact, it is used by many platforms that provide source control
hosting as a service. GitHub’s extensive feature set for team-based software development and
its ease of use makes it a prominent platform of choice among coders and writers alike. It is also
one of the largest communities of coders around. In a nutshell, if you are all in about the commu-
nity and wish to build and collaborate on open-source projects with millions of diligent developers
worldwide, GitHub is just about the right platform for you.

Business Contact

About Happiest Minds Technologies
Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables digital transformation for enterprises and
technology providers by delivering seamless customer experiences, business efficiency and actionable insights. We do this by leveraging a
spectrum of disruptive technologies such as: artificial intelligence, blockchain, cloud, digital process automation, internet of things, robotics/
drones, security, virtual/augmented reality, etc. Positioned as ‘Born Digital . Born Agile’, our capabilities span digital solutions, infrastructure,
product engineering and security. We deliver these services across industry sectors such as automotive, BFSI, consumer packaged goods, e-
commerce, edutech, engineering R&D, hi-tech, manufacturing, retail and travel/transportation/hospitality.

A Great Place to Work-Certified™ company, Happiest Minds is headquartered in Bangalore, India with operations in the U.S., UK, Canada, Australia
and Middle East.

www.happiestminds.com

Author Bio
Vandana Yadav has over 5 years of experience in the IT industry. She has
vast exposure to Azure Cloud services and has worked with many ventures
for their DevOps operations. Vandana is capable of handling CI/CD, infra
creation, Monitoring, certificates for security, Application deployments, azure
Repo, Git & GitHub, and recently she has worked on Migration services.
Before this, Vandana worked with MVP solutions, where she helped clients
enhance their infra for cost optimization and efficient services.

DevOps Management with GitHub 13DevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHubDevOps Management with GitHub

https://www.happiestminds.com/
https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/artificial-intelligence-cognitive-computing/
https://www.happiestminds.com/services/blockchain-solutions-services/
https://www.happiestminds.com/services/cloud-data-center-advisory-transformation/
https://www.happiestminds.com/services/digital-process-automation-dpa/
https://www.happiestminds.com/services/internet-of-things/
https://www.happiestminds.com/services/it-security-services/
https://www.happiestminds.com/services/ar-vr-mr/

