
MANAGING TESTING
DEBTS IN SOFTWARE
PROJECTS

WHAT IS TECHNICAL
DEBT

Managing Testing Debts in Software Projects

In software development, technical debt is the implied cost of additional rework caused
by choosing an easy (limited) solution instead of using a better approach that would take
longer to implement. Analogous to monetary debt, if technical debt is not addressed
properly, it can accumulate "interest", making it harder to implement changes.
Unaddressed technical debt increases the overall cost of software development. In other
words, it’s the result of prioritizing speedy delivery over perfect code. Technical debt
results in teams who make sacrifices in design and jump into coding. Technical debt can
occur in any corner of IT. The more the debt or ignored issues build, the costlier it is to
rectify.
A majority (69%) of IT leaders say technical debt poses a fundamental limit on their ability
to innovate, along with 61% felt it drags on their company’s performance & it will continue
to have a major impact in the future.

Technical debt may have one or more causes such as:

Time pressures

Suboptimal code Delayed refactoring Insu�cient testing

Overly complex
technical design

Poor coding
standards

Lack of skill

Managing Testing Debts in Software Projects

Like Technical debt, we have Testing debt which is quite prevalent across Project teams
in Software Development Projects
Testing debt occurs when a team intentionally or unintentionally chooses an option that
yields benefit in the short term, but results in accrued testing costs in terms of time, e�ort,
or risk in the longer term.

Just like accumulating laundry, manually testing every major or minor release can quickly
get out of control. With every release, your technical debt grows, and so does the risk of
something going wrong.

In simple words: testing debt is all about the testing that you should have done but for
some reason, you didn't.Some of the prime causes for Testing debt are:

Untested features
Tests that are slow or impractical, which can lead to being forgotten/not performed
Items/components that are complex to test
Tests you cannot rely on

Release 1 Release 2 Release 3

Managing Testing Debts in Software Projects

TEST DEBT UNDER
MANUAL TESTING

Test engineers execute test cases manually by following the steps described in a test
specification document. Here are the list of common contributors to test debt related to
manual testing.

Limited test execution
Due to crunched Project timelines, the resources and timelines required to carry
out comprehensive testing are inadequate. This results in the testing team
executing only a subset of tests for a release, which might result in the possibility of
defects getting leaked to production, thereby compromising on the overall quality.

Improper test design
Manual testing is a time-consuming and tedious process. A test case could be
designed with many variations using di�erent combinations of data. Since the
execution of all combinations of test cases is a laborious process for testers, they
restrict themselves to a few happy or positive scenarios during test execution.
This increases the risk of residual defects in the System Under Test (SUT).

Missing test reviews
Test reviews help improve test cases' quality and help find the problems earlier
in the life cycle. Missing test reviews could result in uncovered test cases, or
edge case scenarios which might result in defect leakage to production, and the
overall quality of the product might get compromised.

Managing Testing Debts in Software Projects

TEST DEBT IN
AUTOMATION TESTING

Automation testing involves executing pre-scripted tests to execute and check the results
without manual intervention. The list of factors that contribute to test debt in automation
testing is as follows

Inappropriate or inadequate infrastructure
Tests conducted in Environment/ infrastructure not resembling the customer’s
infrastructure could lead to unpredictable software behavior, resulting in reduced
confidence in the system.

Lack of coding standards
Automated tests must adhere to common coding standards. When the best
practices with respect to coding are not adopted, it increases the e�ort taken to
maintain the automation scripts and the scripts tend to fail, which increases the
overall Test Automation debt over multiple release cycles.

Unfixed (broken) tests
Not fixing broken tests or tests not being updated when functionality changes,
reduces user confidence in the scripts, decreases the quality, and increases the
overall maintenance e�ort, which needs to be factored in over subsequent
releases to avoid automation debt.

Managing Testing Debts in Software Projects

Using record and replay
It is easy to use record and replay tools for testing Graphical User Interface (GUI)
applications. Record and playback tools and plugins are never a long-running
solution since these have minimal test coverage and complex workflows cannot
be validated using record & Playback tools. This approach reduces the test
automation coverage, and the backlog continues to pile up.

Lack of Maintenance
Test scripts rely on selectors (like element ID or Xpath) to find elements in your
UI. For instance, you can instruct the script to click on a specific button or enter
text in a field. The challenge is that these selectors change unpredictably as the
application changes. Even simple styling or layout changes can result in the script
choosing the incorrect button or entering text in the wrong field. This will result in
flaky tests & if these are not updated frequently, the automation scripts will get
into cold storage, and the Automation debt will keep accumulating over time.

R1 R2 R3 R4 R5

Releases Over Time

Test Debt

Managing Testing Debts in Software Projects

HOW DO WE MITIGATE
TEST DEBT?

Once we identify technical debt in our test automation process, it is essential to track,
communicate and plan accordingly.

Track
Work with your management and plan to allocate a portion of the future e�ort to
reduce the technical debt; it’s imperative to identify and add some test debt
stories during the sprint.

Test Automation Debt
Mitigation

Track Technical
Debt

Prioritize the
Debt

Act &
Strategize

Usage of AI
based Test tools

Prioritize
Prioritize work to reduce technical debt in test automation which will have the
most significant impact. Have a strategy to automate the acceptance and sanity
tests early and then have the regression suites automated.

Act
Plan the entire automation strategy & accordingly prioritize your most significant
technical debts and invest time in fine-tuning the Framework design and coding
standards. Sloppy test automation will increase the technical debt over a period.

Advanced Test Automation Tools & Frameworks
The project teams can leverage AI-based test automation tools to speed up the
entire test script design. This will increase the test coverage and reduces the
time created to create tests. These AI-based tools also have self-healing
capabilities which fix the tests whenever there is a change in locators in the
application. This will vastly improve the maintenance e�ort required to fix the
automation scripts. This will help the automation testers to cover the ground
rapidly which will help teams to reduce the overall debt in test automation.
It is an undeniable truth that the more you invest in design and coding standards
for test automation, the more significant the long-term payback you will receive.
Shortcuts and sloppy test automation will have commercial implications over a
period.

Managing Testing Debts in Software Projects

In conclusion, testing debt is a common issue in software projects, and can have a
significant impact on the maintainability and overall health of a codebase. Addressing
testing debt requires a regular testing process, a strong focus on test automation, and
maintaining test infrastructure. By addressing testing debt early, it can help to ensure that
a project remains healthy and maintainable over the long term.

It's important to ensure that tests are independent from the implementation and can be
run in isolation. This will make the tests more maintainable over time, and will make it
easier to understand the impact of changes on the codebase.

Usage of Test metrics: Use testing metrics such as code coverage, test pass rate, and test
execution time to track the health of the test suite. This can help to identify areas of the
codebase that need more attention and can also help to identify tests that are
no longer needed.

By implementing these best practices, it can help to minimize the impact of testing debt
on the overall health and maintainability of a project, and ensure that tests continue to
provide accurate and reliable results over time

Managing Testing Debts in Software Projects

FINAL
THOUGHTS

CONCLUSION:

“Just because your test automation is
working doesn’t mean that it adds value.”

Many test automation teams struggle with the need for
speed in agile development. Some teams use unstructured
record and playback methods or inaccurate testing tools to
create and automate tests quickly, resulting in “throw-away
automation”.

Managing Testing Debts in Software Projects

AUTHOR
BIO

About Happiest Minds
Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a
Mindful IT Company, enables digital transformation for enterprises
and technology providers by delivering seamless customer
experiences, business e�ciency and actionable insights. We do this
by leveraging a spectrum of disruptive technologies such as:
artificial intelligence, blockchain, cloud, digital process
automation, internet of things, robotics/drones, security, virtual/
augmented reality, etc. Positioned as ‘Born Digital . Born Agile’, our
capabilities span digital solutions, infrastructure, product
engineering and security. We deliver these services across industry
sectors such as automotive, BFSI, consumer packaged goods, e-
commerce, edutech, engineering R&D, hi-tech, manufacturing, retail
and travel/ transportation/ hospitality.

A Great Place to Work-CertifiedTM company, Happiest Minds is
headquartered in Bangalore, India with operations in the U.S., UK,
Canada, Australia and Middle East.

Business@happiestminds.com

www.happiestminds.com

Prashanth TV is a Practice Director at Happiest Minds with over 17 years of
experience in the area of Software Testing & Quality Assurance and leads the QA

practice within DBS unit of Happiest Minds. He has extensive experience in areas of
Test Automation across multiple tools and technologies. He has worked on multiple

domains including Airlines, Retail and Manufacturing. He also possesses wide
experience in the consulting and pre-sales areas with a keen interest in emerging

Digital Technologies.

https://www.happiestminds.com/
https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/blockchain-solutions-services/
https://www.happiestminds.com/services/cloud-data-center-advisory-transformation/
https://www.happiestminds.com/services/internet-of-things/
https://www.happiestminds.com/services/artificial-intelligence-cognitive-computing/
https://www.happiestminds.com/services/it-security-services/

