
PULUMI VS TERRAFORM
INSIGHTS FOR ENHANCED INFRASTRUCTURE

Introduction
In the rapidly evolving domain of cloud computing,
Infrastructure as Code (IaC) has emerged as a
cornerstone, revolutionizing how we manage and
provision IT infrastructure. While several tools have been
developed to harness the power of IaC, Terraform by
HashiCorp has established itself as a frontrunner, known
for its versatile, declarative approach and extensive
provider ecosystem. It enables users to define
infrastructure in a simple, human-readable language,
making it a staple in many organizations’ tech stacks.

However, the IaC landscape is dynamic, with newer tools
bringing innovative approaches and capabilities. Among
these, Pulumi stands out as a modern IaC tool that
challenges conventional boundaries. Pulumi
di�erentiates itself by allowing developers to define
infrastructure using general-purpose programming
languages such as Python, TypeScript, JavaScript, C#, Go,
F#, Java, and YAML. This approach not only resonates with
so�tware engineers’ existing skill sets but also opens
doors to more sophisticated, programmable
infrastructure management.

This white paper aims to delve into the advantages of
Pulumi over Terraform, shedding light on why engineers
and organizations should consider it as a viable and
potentially superior alternative. We will explore how
Pulumi’s modern approach to IaC can lead to enhanced
productivi ty, greater flexibility, and better integration
with existing development practices. By comparing these
two leading tools, we can derive valuable insights to
make informed decisions about adopting the right IaC
solutions to meet the evolving infrastructure needs.

© Happiest Minds 2024

Infrastructure as Code (IaC)
Infrastructure as code, or IaC, provides and manages infrastructure through code instead of manually doing it. Infrastructure is
described as code that enables users to e�ciently distribute and update configurations while maintaining the infrastructure’s
desired state. This implies that reproducible infrastructure setups are possible.

“The enabling idea of Infrastructure as code is that the systems and devices that are used
to run so�tware can be treated as if they, themselves, are so�tware”.

Enhanced Efficiency

Disaster Management

Accountability

Security

Consistency

Scalability

Higher Speed

IAC Tools

Benefits of IAC

Terraform

AWS
CloudFormation

Google CDM

ARM Templates

Pulumi

© Happiest Minds 2024 *All product names, logos, and brands are property of their respective owners

Terraform
Terraform, introduced by HashiCorp in 2014, has rapidly ascended to become the leading tool in the Infrastructure as Code (IaC)
landscape. Its emergence marked a significant shi�t in how organizations approach infrastructure automation and management.
Today, Terraform is extensively used by a multitude of companies worldwide, ranging from small startups to large enterprises,
owing to its powerful and flexible infrastructure provisioning capabilities.

Renowned for its declarative configuration approach, Terraform utilizes the HashiCorp Configuration Language (HCL) to enable
clear and concise infrastructure definitions. This approach has made Terraform exceptionally popular among organizations
seeking to implement consistent, reproducible, and scalable infrastructure management practices.

Terraform no longer an Open-Source

On August 10, 2023, HashiCorp announced a change
of license for its products, including Terraform.
A�ter 9 years of Terraform being open source under
the MPL v2 license, it was to move under a
non-open source BSL v1.1 license, starting from the
next (1.6) version.

Impact of License Change

DevOps product companies: These companies might face additional licensing costs or restrictions. It a�ects product
development roadmaps to ensure compatibility under new license terms.

SaaS Companies: License change could significantly impact these companies’ own infrastructure and automation flows.

Usage limitations for BSL License

All non-product uses are permitted. All production
uses are allowed other than hoisting or embedding
the so�tware.

© Happiest Minds 2024 *All product names, logos, and brands are property of their respective owners

Disadvantages of Terraform

Terraform has long stood as a leading tool in the Infrastructure as Code landscape, praised for its versatility and robust provider
ecosystem. However, its recent transition from an open-source model to a Business Source License (BSL) introduces new
considerations for users, particularly around licensing restrictions and commercial usage. Coupled with its inherent
disadvantages such as its learning curve and state management complexities, this licensing change may prompt organizations
and developers to re-evaluate their IaC strategies. As the landscape of cloud infrastructure continues to evolve, it becomes
increasingly important for these stakeholders to stay adaptable, balancing the strengths of tools like Terraform with emerging
needs and alternatives in the market.

Learning Curve
• Terraform's unique syntax, the HashiCorp Configuration Language

(HCL), while powerful, can be a hurdle for newcomers.Users o�ten
need to invest time to become proficient in HCL.

State Management

• Terraform manages state locally by default, which can lead to challenges
in collaborative environments.

• While remote state backends are available, setting up and managing
these, especially in large teams or projects, can add complexity.

Secret Management • Secrets are stored in a separate product (Vault). There is no way to
encrypt them in the state file.

Testing and
Validation

• Terraform does not provide built-in testing capabilities, requiring users
to rely on external testing frameworks and tools.

Infrastructure Reuse
and Modularity

• Constraint abilities, as can reuse only Terraform modules.

Adopt Existing
Resources • No code generation capabilities while adopting existing resources.

Dynamic Support
• Terraform does not have Dynamic providers, hence the challenge of

managing resources or services that do not have an existing Terraform
provider.

Error Messages
and Debug

• The error messages generated are o�ten cryptic, hence challenging to
debug.

Third Party
Integration

• Some advanced features and functionality may require integrating
third party tool or services, adding complexity to overall setup.

© Happiest Minds 2024

Pulumi is an open-source infrastructure as code platform that helps teams tame the cloud’s complexity using the world’s most
popular programming languages (TypeScript, Go, .NET, Python, and Java) and markup languages (YAML, CUE). Pulumi is a newer,
development friendly tool. It can be used for a wide range of cloud-based infrastructure deployments. As a modern IaC, Pulumi
leverages existing programming languages and their native ecosystems to interact with cloud resources.

Pulumi’s platform-in-a-box approach provide a comprehensive and integrated solution for IaC management. This enables
developers to quickly provision approved infrastructure, boosting productivity with pre-configured architectures, automated
testing, and deployment adhering to organizational standards

Pulumi
EMPOWERING CLOUD INFRASTRUCTURE WITH OPEN-SOURCE INNOVATION

Pulumi For Platform Teams

Pulumi supports all
AWS services and
stays up-to-date with

all AWS features

Pulumi supports all
Google Cloud APIs and
stays up-to-date with
all Google Cloud

features.

The Azure Native
provider is always
up-to-date and covers
100% of the resources
in Azure Resource

Manager (ARM).

Pulumi has first class
support for all popular

kubernetes tools

© Happiest Minds 2024 *All product names, logos, and brands are property of their respective owners

Pulumi’s Platform-In-Box Approach

Pulumi’s Platform-In-Box Approach

Pulumi Development Portal

Distribute standard private
templates through an
out-of-the-box Service Catalog
experience, which developers
can browse and deploy from
using the Pulumi Cloud console.

Pulumi IaC

• Utilize open-source IaC in
TypeScript/JavaScript, Python,
Go, C#, Java, and YAML.

• Build and distribute reusable
infrastructure components for
150+ cloud & SaaS providers,
supporting modern and
cloud-native architectures.

Pulumi Automation API

Automation API is a programmatic
interface for Pulumi CLI, allowing
you to embed infrastructure
automation into application code
that runs on your servers.

Pulumi Backstage Plugin

• Enable developers to browse,
deploy, and monitor Pulumi
infrastructure deployments
from an existing Backstage
portal.

• Use the plugin to integrate
Backstage with Pulumi
Developer Portal, where your
private infrastructure
templates are hosted.

Pulumi Cloud

• Maintain control and tracking
over deployed infrastructure,
with complete history of
updates and audit logs easily
viewable from a console.

• Enhance security with RBAC,
identity provider integrations,
SSO, and more.

Pulumi ESC

• Centrally store and manage
secrets and configuration from
di�erent providers.

• It provides a unified, secure
location for all your
configuration while managing
developer access centrally.

Pulumi Deployments

• Centrally orchestrate automated
deployment workflows with `git
push to deploy`, UI triggers, and
API.

• Advanced capabilities like
ephemeral environments and
extensibility for dri�t detection,
TTL, blue/green, and more.
Integrate with CI/CD, VCS, and
more using the API.

Pulumi CrossGuard

Utilize compliance-ready policies
for any cloud to enhance
compliance and use remediation
policies to automatically correct
configuration violations like
auto-tagging, removing Internet
access, and enabling storage
encryption.

Boost developer
productivity

Increase visibility &
observability

IDP solutions
out-of-box

Collaborate accross
DevSecOps

Enforce standards &
compliance

© Happiest Minds 2024

Feature Terraform Pulumi

State Management

Modes of Execution

Secrets Management

Policy as Code

• Terraform stores the states locally in a
file, that can lead to collaboration issues
like conflicts when multiple team
members working on same infrastructure.

• The local file can be vulnerable to
security risks such as data loss,
corruption, and unauthorized access

• Terraform uses its CL tool to create
infrastructure.

• Terraform stores all secrets in plain text
in the state file, making them visible to
anyone who can access the file.

• Terraform provides policy as code
through its Sentinel product, which is
closed source and limited to Terraform
Enterprise and Terraform Cloud.

• Sentinel also requires the use of a
proprietary HashiCorp Sentinel Language.

• Pulumi uses Pulumi Cloud to manage
states.

• Pulumi automatically maintains and
stores the state securely and is
scalable, eliminating the need for
manual state file management.

• Additionally, Pulumi supports

which can improve deployment

only the necessary resources.

• Pulumi Supports CLI to execute
commands.

• Pulumi also provides two APIs by
which you can execute Pulumi
commands.

• First, the Automation API allows you
to provision, update, and destroy
infrastructure through Pulumi
directly in your application code.

• Second, the REST API allows you to
query and interact with state
information, history, stack tags when
using the Managed Pulumi Cloud.

• Pulumi encrypts all secrets both
during transmission and while
stored, so that they are not viewable
in plain text and can only be
accessed with the encryption key.

• Pulumi also provides an extensible
encryption facility that allows you to
elect to use your own keys managed
by a third-party solution.

• Pulumi, however, provides policy as
code through CrossGuard which acts
as programmable guardrails to
enforce security, best practices, and
cost across all infrastructure.

• CrossGuard is open source, free to
use, and lets you write rules in
Python, JavaScript, or Open Policy
Agent (OPA) Rego.

© Happiest Minds 2024

© Happiest Minds 2024

Feature Terraform Pulumi

Provider support

Cloud native support

Dynamic provider support

• Terraform supports across multiple IaaS,
SaaS, and PaaS providers.

•
Kubernetes core API and Helm but has
generic support for CRDs, meaning no
compile-time type-checking or
auto-complete.

• No support.
• Terraform does not have a direct

equivalent to Dynamic Providers and
would require writing complex and
proprietary modules to build custom
resources with CRUD operations.

• Pulumi has deep support for cloud
native technologies like Kubernetes
and supports advanced deployment
scenarios that cannot be expressed
with Terraform.

• Pulumi supports over 60 of the
leading cloud providers and modern

• Pulumi also has native providers for
AWS, Azure, Google, and Kubernetes
that provide same-day support for
every new release.

• Pulumi supports the cloud native
ecosystem. This includes a native
Kubernetes provider with 100%
Kubernetes API coverage in all
languages, including compile-time
type-checking.

• Pulumi also includes Helm support,
strongly typed Custom Resource
Definitions (CRDs), deploying
Kubernetes YAML or customize
templates, as well as a
YAML-to-Pulumi conversion tool that
can translate any Kubernetes YAML
into your desired language.

•
built-in best practices for production
cluster deployments for AWS EKS,
Azure AKS, and Google GKE.

• Pulumi provides dynamic providers
that allow you to extend your system
by creating new kinds of custom
resources by directly coding CRUD
operations for the new resource in
your Pulumi program.

• This can be used to support new
resource types in addition to
performing complex integrations like
database migrations, configuration
management for virtual machines,
and more, all orchestrated alongside
your IaC workflows.

© Happiest Minds 2024

Feature Terraform Pulumi

Import code from
other IaC tools

• No support. • Pulumi allows you to convert
templates by Terraform HCL,
Kubernetes YAML, and Azure ARM
into Pulumi programs.

• This preserves existing program
structure, which may be important if
you carefully designed your existing
infrastructure as code layout in terms
of names, modules, and
configurability.

Embedded with
Application Code

• No support. • Pulumi can embed Pulumi programs
directly into your application code
through the Automation API, a
programmatic interface for running
Pulumi programs without the Pulumi
CLI.

• The Automation API is a strongly
typed and safe way to use Pulumi in
embedded contexts such as web
servers without having to shell out to
a CLI.

Audit Capabilities • No support. • Pulumi provides audit logs that
enable you to track the activity of
users within an organization.

• Audit logs capture the UNIX
timestamp of the event, the user who
invoked the action, the event that
took place, and the source IP of the
call the user made.

• These logs are available to
organizations with an Enterprise
level subscription.

• The logs are immutable and record
all user actions.

Aliases • Terraform supports the notion of
resource renaming and reparenting but
Terraform does not currently support
declaratively changing the underlying
type of a resource or moving it to another
workspace.

• Aliases help facilitate refactoring by
allowing you to modify certain
properties of a resource without risk
of replacing it.

• With an alias, you can change the
logical name of a given resource,
change its parent (i.e., move it from
one component to another), change
its underlying resource type, or even

project or stack.

Adopt Existing Resources • Terraform supports importing existing
resources.

• Terraform only supports importing state
but requires you to hand-author the HCL.

• Pulumi also supports importing
existing resources.

• Pulumi also allows you to generate
code in your language of choice from
the existing state.

Pulumi AI Support

Pulumi Code vs Terraform Code

Pulumi’s Support for Terraform

A sample code for provisioning AWS EC2 instance

Terraform

Pulumi AI is the AI assistant that can create cloud
infrastructure using Pulumi.

User can use natural language prompts to
generate Pulumi infrastructure-as-code programs
in any language.

It builds on the power of Large Language Models
(LLMs) and GPT to dramatically reduce the time it
takes to discover, learn, and use new cloud
infrastructure APIs

With Pulumi, it is possible to consume both local and remote Terraform state, which can be useful if you are transitioning to
Pulumi or if di�erent teams within your organization have di�erent tool preferences. Pulumi can adapt any Terraform Provider
for use with Pulumi, enabling management of any infrastructure supported by the Terraform Providers ecosystem using Pulumi
programs. By using the state reference support, for instance, you can create higher-level infrastructure in Pulumi that utilizes
the VPC information provided by Terraform, such as the VPC ID and Subnet IDs, making the integration between Pulumi and
Terraform e�ortless.

Pulumi (in TypeScript)

© Happiest Minds 2024

Drawing from in-depth case studies of 20 leading companies, the following analysis o�ers a detailed
look at Pulumi’s transformative impact in the realm of IaC. The experiences of these industry leading
companies underscore Pulumi’s value as a strategic tool for modern cloud infrastructure
management.

EMPOWERING TRANSFORMATION-INSIGHTS FROM TOP COMPANIES
USING PULUMI

The top 5 reasons why companies chose Pulumi are as following.

Few leading companies selected for analysis.

Why Are Top Companies choosing Pulumi?

Summary

© Happiest Minds 2024

Language Familiarity and
Flexibility

Flexibility, Customization
and Enhanced Infrastructure

Due to Pulumi’s support for
general-purpose languages
like Python, TypeScript and
Go to align with existing
developer skills, reduce the
learning curve and integrate
seamlessly with standard
development practices.

DeveloperEmpowerment
Security Features and
Compliance

Due to Pulumi’s “developer-first”
approach, empowering
developers to take full control of
the infrastructure, leading to
faster innovation and
deployment.

Due to Pulumi’s integration of
robust security features and
compliance mechanisms.

Due to Pulumi’s flexible
approach to infrastructure as
code, that allows for the
tailored solutions that fit
specific business needs,
enabling more sophisticated
infrastructure management.

Multi Cloud Support

Due to Pulumi’s ability to
manage resources across
di�erent cloud providers
e�ciently.

01 02 03

0504

*All product names, logos, and brands are property of their respective owners

Key Benefits Realized by Organizations

© Happiest Minds 2024

Significant Boost in
Deployment Speed

Companies reported
an average of 70%
improvement in

deployment times,
translating to faster
and more e	cient

operations

Enhanced
Time-to-Market

Companies
experienced a 50%

improvement in
their time-to-market
for new features and
products, a critical

factor in maintaining
competitive
advantage.

Robust Policy as
Code &Security Compliance

A standout benefit of
75% improvement in
policy and security

compliance with
Pulumi, showcases
Pulumi’s superior

capability in
ensuring robust

security standards
and adherence to

regulatory
compliance.

Boosted
Productivity

A notable 60%
increase in developer

productivity was a
common theme,

underscoring
Pulumi’s

eectiveness in
optimizing workflow

e	ciencies.

Significant Cost
Reductions
On average,

organizations using
Pulumi observed a

65% decrease in
operational costs,

highlighting Pulumi’s
role in driving

economic e	ciency.

“Pulumi is not just a tool, it’s a transformative force
for modern organizations. It empowers entire
teams – bridging the gap between developers,
operations, and infrastructure. By unifying the
language of infrastructure with the language of
so�tware development, Pulumi enables a cohesive,
e�cient, and innovative approach to infrastructure
management, driving businesses towards new
heights of agility and operational excellence.”

As we navigate the ever-evolving landscape of Infrastructure as Code (IaC), it becomes increasingly clear that the choice of tools
is not just about managing infrastructure; it's about shaping the future of technology deployment and management. This white
paper has journeyed through the foundational concepts of IaC, evaluated the established presence of Terraform, and
illuminated the rising significance of Pulumi in this domain.

This white paper reveals that while Terraform has set a high standard in the IaC field with its robust features and widespread
adoption, Pulumi emerges as a formidable contender, especially for teams seeking advanced programming capabilities and
tighter integration with so�tware development practices. The unique advantages of Pulumi, including its use of familiar
programming languages, sophisticated infrastructure management capabilities, and real-time feedback, position it as a tool
that not only addresses current needs but also anticipates future challenges in cloud infrastructure management.
As we stand at this technological crossroads, it's imperative for engineers, architects, and IT decision-makers to carefully
consider their options. The decision to choose between Terraform and Pulumi should be guided by specific project
requirements, team skill sets, and the long-term strategic goals of the organization. The future of IaC is dynamic and promising,
and tools like Pulumi are at the forefront of this innovation, o�ering new possibilities and e�ciencies.

The comparison between Terraform and Pulumi is not just a technical evaluation; it is a glimpse into the future of how we build,
manage, and evolve our digital infrastructures in an increasingly cloud-centric world.

EMBRACING THE FUTURE OF INFRASTRUCTURE MANAGEMENT
WITH PULUMI

Conclusion

© Happiest Minds 2024

Anusha is a seasoned Test Lead at Happiest Minds Technologies, bringing over 12 years of
extensive experience in quality assurance. Her expertise lies in both manual and automated
testing, primarily on JavaScript and Java frameworks. Throughout her career, Anusha has
worked with a diverse range of clients across various domains and technologies, consistently
ensuring the highest quality of products. She is passionate about technology and an avid
learner who is always keen on exploring new advancements in the field.

Author

© Happiest minds 2024

Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables digital transformation for enterprises and technology
providers by delivering seamless customer experiences, business effciency and actionable insights. We do this by leveraging a spectrum of
disruptive technologies such as: artificial intelligence, blockchain, cloud, digital process automation, internet of things, robotics/drones, security,
virtual/ augmented reality, etc. Positioned as ‘Born Digital. Born Agile’, our capabilities span Product & Digital Engineering Services
(PDES), Generative AI Business Services (GBS) and Infrastructure Management & Security Services (IMSS). We deliver these services across
industry sectors such as automotive, BFSI, consumer packaged goods, e-commerce, EdTech, engineering R&D, healthcare, hi-tech,
manufacturing, retail, and travel/transportation/hospitality. Happiest Minds is headquartered in Bangalore, India with operations in the U.S.,
UK, Canada, Australia, and the Middle East.

Anusha Sasindran
Test Lead, PDES

https://www.happiestminds.com/
https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/artificial-intelligence-cognitive-computing/
https://www.happiestminds.com/services/blockchain-solutions-services/
https://www.happiestminds.com/services/managed-cloud-services/
https://www.happiestminds.com/services/robotic-process-automation/
https://www.happiestminds.com/services/internet-of-things/
https://www.happiestminds.com/services/it-security-services/
https://www.happiestminds.com/services/ar-vr-mr/

