
THE EVOLUTION OF
APPLICATION DEVELOPMENT
HOW TO
TRANSITION
FROM XAMARIN
TO .NET MAUI

1

TABLE OF CONTENT
1. Introduction... 03
1.1. Understanding Microsoft's Decision to Retire Xamarin.. 03
1.2. The Catalysts for Change: Why .NET MAUI?.. 03
1.3. Implications for Developers: Navigating the Transition... 04
1.4. What’s Next?.. 04

2. .NET Multi-platform App UI (.NET MAUI) - Microsoft's Latest
 Cross-Platform Framework... 05
2.1 Exploring the Essence of .NET MAUI.. 05
2.2 Understanding How .NET MAUI Operates.. 06
2.3 UI Handler Architecture.. 07
2.4 Supported Design Patterns... 07
2.5 Embracing Modern Development Practices... 08

3. Guide for Migrating Your Apps to .NET MAUI... 09
3.1 Introduction to Migrating with .NET MAUI... 09
3.2 Migration Prerequisites.. 10
3.3 Unified Migration Path for Xamarin Native Projects (Xamarin.iOS & Xamarin.Android) to .NET............ 11
3.4 Migration Path for Xamarin.Forms Projects to .NET MAUI.. 12
3.5 Build, Test, and Troubleshoot... 12
3.6 Key Considerations for Migration.. 13

4. A Note on Community and Support... 14

5. MAUI's Future Outlook... 15

6. MAUI + Blazor: Why it Can Be a Game Changer... 16

7. Conclusion.. 17

8. References... 17

© Happiest Minds 2024 02

Microsoft's strategic shift from Xamarin to .NET
Multi-platform App UI (.NET MAUI) signifies a pivotal
transformation in the mobile and desktop
application development landscape. This evolution
transcends a mere change in technology; it
embodies Microsoft's foresight in unifying and

refining the framework for crafting cross-platform
applications. With .NET MAUI, developers are
ushered into a new era where the e�ciency of
development and the performance of applications
are paramount, ensuring a seamless and robust
experience across all platforms.

Microsoft’s embrace of .NET MAUI is driven by several compelling factors that promise to reshape the
development landscape:

The journey from Xamarin to .NET MAUI is rooted in a vision
that seeks to harmonize the development process by
integrating all platform-specific needs into a singular,
comprehensive framework. Xamarin, once a beacon for
cross-platform development using C#, has paved the way
for this transition, setting the stage for a more advanced
framework. Microsoft support for Xamarin will end on May 1,
2024, for all Xamarin SDKs, including Xamarin.Forms. The
move towards .NET MAUI reflects a strategic pivot aimed at
enhancing developer productivity and application
performance, ensuring that the future of app development
aligns with the rapidly advancing technological
environment and user expectations for dynamic, responsive
applications.

INTRODUCTION 11
1.1 Understanding Microsoft's

Decision to Retire Xamarin

1.2 The Catalysts for Change: WHY .NET MAUI?

Simplified Project and Development
Experience:
.NET MAUI simplifies the project structure and
unifies the development experience, making it
easier to manage code and reduce complexity
across di�erent platforms. This change improves
workflow e�ciency and makes it easier to bring
ideas to life.

Enhanced Performance
and Flexibility:
Building on the improvements from .NET 6, .NET
MAUI boosts application performance, o�ering
faster startup times and smoother interactions. It
also addresses previous performance issues,
ensuring applications are responsive and fluid
across all devices.

Modern, Adaptive UI Toolkit:
It introduces a modern UI toolkit that o�ers
adaptive layouts and controls, ensuring that
applications provide a consistent and
high-quality user experience on any device,
automatically adjusting to di�erent screen sizes
and orientations.

Comprehensive Ecosystem and
Advanced Feature Integration:
Developers have access to the extensive .NET
ecosystem, allowing for the integration of
advanced features such as AI, machine learning,
and cloud services. This capability enables the
creation of complex, feature-rich applications that
are both innovative and cross-platform.

2
© Happiest Minds 2024 | *All logos are properties of their respective owners. 03

1.3 Implications for Developers:
NAVIGATING THE TRANSITION

1.4 What’s Next?

The shift to .NET MAUI is a monumental step for developers,
o�ering a blend of challenges and opportunities:

For developers versed in Xamarin, the transition
to .NET MAUI is an opportunity to evolve their
skillset, leveraging the familiar .NET principles and
C# language in a more advanced framework. This
evolution is supported by Microsoft’s commitment
to providing comprehensive resources, ensuring
developers can seamlessly adapt to and excel in
the new environment.

As we transition from Xamarin to the broader
horizons of .NET MAUI, it's clear that this evolution
signifies more than just a technological update; it's
a significant advancement in cross-platform
development practices. .NET MAUI brings the
promise of unified codebases for mobile and
desktop platforms, improved performance, and an
expansive feature set, setting new benchmarks for
application development.

In our forthcoming discussion, we will closely
examine .NET MAUI's architecture and capabilities,

particularly highlighting its role in enhancing
Xamarin's development paradigms. This
exploration is crucial for understanding the
migration process from Xamarin—both Forms and
Native—ensuring developers are well-prepared to
utilize .NET MAUI e�ectively in their projects.

Our focus will sharpen migration strategies and
critical considerations, equipping developers with
the insights needed to fully leverage .NET MAUI's
potential to upgrade their mobile applications.

Skillset
Evolution

Microsoft’s dedication to facilitating this transition
is evident in the wealth of resources made
available to developers. From detailed
documentation and hands-on tutorials to active
community forums, developers are
well-supported as they navigate the nuances of
.NET MAUI, ensuring they can leverage the full
potential of the framework.

Resource
Availability

Embracing .NET MAUI is not merely about
keeping pace with technological advancements;
it’s about setting a foundation for the future. This
framework ensures that applications remain at the
forefront of performance, usability, and relevance,
securing a competitive edge in the ever-evolving
digital landscape.

Future-Proofing
Projects

2
© Happiest Minds 2024 04

.NET Multi-platform App UI (.NET MAUI) is Microsoft's
cross-platform open-source application
development framework that allows you to create
native mobile and desktop applications using C#
and XAML. It is designed to unify and enhance the
development experience for building native mobile
and desktop apps that can run on Android, iOS,
macOS, and Windows from a single shared code
base. While .NET MAUI directly succeeds
Xamarin.Forms, it also addresses the broader

Xamarin ecosystem, including Xamarin.Native
(Xamarin.Android and Xamarin.iOS). Developers
who have utilized Xamarin.Native for
platform-specific functionalities can find solace in
.NET MAUI's architecture, which incorporates these
native capabilities seamlessly into its framework,
ensuring that all Xamarin developers, regardless of
their focus, benefit from the transition.

.NET Multi-platform App UI (.NET MAUI)

Microsoft's Latest
Cross-Platform Framework

2
2.1 Exploring the Essence of .NET MAUI

.NET
.NET Multi-platform App UI

iOS Android macOS Windows

© Happiest Minds 2024 | *All logos are properties of their respective owners. 05

On Android, the
transition from C# code
to native assembly is
managed through
just-in-time (JIT)
compilation, optimizing
launch times.

For iOS, ahead-of-time
(AOT) compilation
translates C# into
native ARM assembly
code, ensuring e�cient
performance.

macOS applications
leverage Mac Catalyst
to extend iOS apps to
the desktop
environment,
integrating additional
APIs for a broader
application scope.

Windows applications
utilize the WinUI 3
library, focusing on
creating rich desktop
experiences with native
UI capabilities.

2 2.2 Understanding How .NET MAUI Operates

The diagram above provides a
high-level overview of the .NET
MAUI app architecture. At its
foundation, .NET MAUI capitalizes
on the advancements of .NET 6,
integrating with specialized
frameworks for each platform
while sharing a common .NET
Base Class Library. This shared
library abstracts the complexities
of each platform, supported by
Mono for Android, iOS, and
macOS and by .NET CoreCLR for
Windows, thus standardizing the

development environment across
ecosystems.

The innovation of .NET MAUI lies
in its ability to streamline the
traditionally fragmented process
of UI development. Where once
separate codebases were the
norm for di�erent platforms, .NET
MAUI introduces a cohesive
framework, enabling the design
of versatile user interfaces with
minimal redundancy.

Developers engage primarily with
the .NET MAUI API, which acts as
the conduit to native platform
functionalities. This direct
interaction ensures that
applications can fully utilize the
unique features of each platform,
o�ering the flexibility to
incorporate platform-specific APIs
into the development process
when necessary.

App Code

.NET MAUI

.NET BCL

.NET for Android

Android

Mono Runtime .NET CoreCLR

.NET for iOS

iOS

1 2

3

Compiling with Versatility:

NET MAUI’s design philosophy balances the ease of a unified development approach with the depth
needed for accessing platform-specific features. This framework empowers developers to craft
applications that are not only versatile across platforms but also optimized for performance, embodying
the true spirit of modern, cross-platform development.

© Happiest Minds 2024 06

2.3 UI Handler Architecture At the heart of .NET MAUI's versatility is its UI
Handler architecture, which abstracts the
platform-specific implementations of UI
components into a set of common interfaces and
handlers. This innovative approach allows for
more direct communication between the shared
code and the native platform controls, leading to
better performance and more control over the
rendering and behavior of UI elements.

Customization and Extensibility:
Developers can easily customize and
extend existing controls or create new
ones, thanks to the flexibility o�ered by
the UI Handler architecture.

Performance:
Reduces the overhead typically
associated with cross-platform UI
rendering, ensuring applications run
smoothly across all target platforms.

2.4 Supported Design Patterns

2.4.1. Model-View-ViewModel (MVVM)

MVVM remains a cornerstone for developers working within the .NET ecosystem, and .NET MAUI enhances
its support for this pattern. MVVM facilitates a clear separation of concerns between the presentation logic
and the business logic of an application. .NET MAUI’s data binding capabilities, combined with the powerful
XAML for UI definition, allow developers to create responsive and dynamic interfaces while maintaining
clean, testable, and maintainable code.

Allows the View to automatically update and
display data from the ViewModel, ensuring the UI
reflects any changes to the underlying data
without manual intervention. This mechanism
supports a seamless synchronization between
the View and the ViewModel, facilitating a
dynamic and responsive user experience.

Enable the View to send user actions (like clicks
and selections) to the ViewModel, which
processes these actions without directly
manipulating the Model. Commands simplify
event handling by encapsulating action logic,
significantly reducing the need for boilerplate
code and further decoupling the UI from the
business logic.

Button
Microsoft.Maui.Controls

IButton
Microsoft.Maui

ButtonHandler
Microsoft.Maui.Handlers

iOS
UI Button

UI Kit

AppCompactButton
AndroidX.AppCompact.Widget

ButtonHandler
Microsoft.Maui.Handlers

Cross-platofrm
control (virtual
view)

Handlers

Native Views

View
(Renders UI by binding to

ViewModel for UI updates)

ViewModel
(Holds the presentation logic
and data for the View, reacts

to user inputs by using
commands)

Model
(Business data and logic)

Commands

Data Binding

ViewModel Notifications for updates
back to View

Model Notifications for updates
back to ViewModel

Updates or Interacts

Data Binding Commands

© Happiest Minds 2024

3
07

2.4.2 Model-View-Update (MVU)

Model
(Holds the application’s state)

View
(Renders UI based on the

model state)

Update
(Processes Messages,

Updates the Model State)State changes
re-render
the view

User
interactions

trigger
messages

New state based on updates
The MVU pattern is gaining traction for its simplicity and the way it revolutionizes state management in
applications. .NET MAUI introduces first-class support for MVU through the Community Toolkit, empowering
developers to build applications where the UI is a function of the state. This pattern encourages a
unidirectional data flow, making state management predictable and debugging simpler.

.NET MAUI revolutionizes the cross-platform
development landscape by unifying the development
experience and championing modern practices. Its
support for design patterns like MVVM and MVU
allows developers to tailor their approach to fit
project requirements, enhancing code quality in
terms of organization, maintainability, and testability.
Additionally, the introduction of the UI Handler
architecture showcases .NET MAUI's dedication to
modernization, paving the way for applications that
are both high-performing and customizable.

This overview lays a foundational understanding of
.NET MAUI’s core features, emphasizing its
adaptability and the significant performance benefits
it o�ers. As we consider the transition from Xamarin
to .NET MAUI, it’s crucial to grasp these design
patterns and architectural advancements. They
underscore .NET MAUI's role in shaping the future of
cross-platform application development.

Next, we will delve into the migration process from
Xamarin to .NET MAUI. This section aims to guide
developers through leveraging .NET MAUI's robust
capabilities to achieve a seamless upgrade, marking
a step towards adopting a more flexible, powerful,
and forward-looking framework.

Centralizes the state of the app, ensuring UI
consistency and simplifying state updates.

Enhances the ability to reuse components across
di�erent parts of the application, promoting code
reusability and consistency.

State Management: Component Reusability:

2.5 Embracing Modern Development Practices

© Happiest Minds 2024 08

Embarking on the journey to .NET MAUI represents a pivotal shift towards streamlined and innovative app
development across multiple platforms. This guide aims to illuminate the path for seamlessly transitioning
your applications, leveraging .NET MAUI's robust capabilities for a modern, unified development
experience. The Xamarin project types that can be considered for upgrading to .NET MAUI are:

Guide for Migrating
Your Apps to .NET MAUI

3
3.1 Introduction to Migrating with .NET MAUI

Xamarin Project Types

Xamarin Forms Projects Xamarin Native Projects Xamarin Binding Projects

Xamarin.Forms Multi Project Xamarin.Android Android Binging Library

Xamarin.Forms Single Project iOS Binding Library

Xamarin.Forms UWP Project Xamarin.Mac

Xamarin.tvOS

iOS App Extensions

iOS SpriteKit

iOS SceneKit

iOS Metal

Android Wear

Xamarin.iOS

© Happiest Minds 2024 09

3.2 Migration Prerequisites
Following is the pre-migration checklist/prerequisites, which must be considered before the transition from
Xamarin to .NET MAUI application.

A Note on .NET Upgrade Assistant:
It's important to note that while the .NET Upgrade Assistant significantly streamlines this process, it may not
cover the entire upgrade path, necessitating manual interventions for a complete migration. Each approach,
from automated assistance to detailed manual steps, is designed to guide developers through the nuanced
journey of transitioning to .NET MAUI, ensuring a thorough understanding of the process and its intricacies.

Prerequisites
Android version
IOS version

Visual Studio version
.NET version
Xamarin.Forms

5.0 (API 21) or higher
10 or higher

2022 v17.6 or later
.NET 8 or later
Xamarin.Forms 5.0 or higher

In the upcoming discussion, we will primarily focus on,

Unified Migration Path for Xamarin
Native Projects (Xamarin.iOS &

Xamarin.Android) to .NET

Migration Path for Xamarin.Forms
Projects to .NET MAUI (adopting a

multi-project or a single-project approach)

Preparation and Initial Setup Preparation and Initial Setup

Create a New .NET Project

Transition to SDK-Style Projects

Create a New .NET Project

Migrate Code and Resources

Update Dependencies

Migrate Code and Resources

Adjust Project Settings and MSBuild Properties

Update Namespaces and APIs

Configuration Files and Other Adjustments

Build, Test, and Troubleshoot - The Final Migration Step for both
Xamarin.Native and Xamarin.Forms Projects

Upgrade or Replace Dependencies

© Happiest Minds 2024 10

3.3 Unified Migration Path for Xamarin Native
Projects (Xamarin.iOS & Xamarin.Android) to .NET

This segment will cover the consolidated common steps for migrating both Xamarin.iOS and Xamarin.Android
projects to the .NET ecosystem:

Check Microsoft's o�cial .NET compatibility and
Xamarin migration guides for any known issues or
considerations.

Create a branch of your existing project in your
version control system or make a full copy of the
project directory for safety.

Preparation and Initial Setup1
In Visual Studio, create a new .NET project,
selecting a template that closely matches your app's
platform (iOS or Android) and architecture. Ensure it
targets .NET 8 (net8.0-ios or net8.0-android) and
name it to match your existing Xamarin project for
ease of transition.

Create a New .NET Project2

Confirm your new project uses an SDK-style .csproj
file, which simplifies project management and is
automatically configured for new .NET projects.

Transition to SDK-Style Projects3
Manually transfer your source code, .xaml files,
images, fonts, storyboards (iOS), XML layouts
(Android), and other resources to the new project,
maintaining a similar structure for ease of
management.

Migrate Code and Resources4

Use Visual Studio's NuGet package manager to find
and update each dependency to its .NET or .NET
Standard version. For packages without direct .NET
equivalents, look for alternatives or pre-release
versions targeting .NET.

Update Dependencies5
Set up the necessary platform-specific
configurations in your new .csproj file, including
runtime identifiers, MSBuild properties adaptation,
and code signing (iOS).

Adjust Project Settings and
MSBuild Properties6

iOS: Migrate key-value pairs from your Xamarin.iOS
Info.plist to the new project's Info.plist. Copy app
entitlements and ensure they're correctly
associated with project configurations.

Android: Adjust configuration settings from
AndroidManifest.xml to the .NET project file where
applicable. Address runtime behavior di�erences
and adjust linker settings to optimize app size and
performance.

Configuration Files and Other
Adjustments7

© Happiest Minds 2024 11

3.4 Migration Path for Xamarin.Forms Projects to .NET MAUI
(adopting a multi-project or a single-project approach)

This segment will cover the process of migrating Xamarin.Forms project to .NET MAUI, considering both the
multi-project and single-project approaches:

Ensure your app is on Xamarin.Forms version 5.0 for
optimal compatibility.
Upgrade all dependencies to their latest versions to
ensure .NET 8 compatibility.
Thoroughly test your app to verify that updates do
not introduce regressions.

Preparation and Initial Setup
(Update Xamarin.Forms App)1

In Visual Studio, initiate a new .NET MAUI project.
Use the same name as your Xamarin.Forms app to
maintain consistency.
For a multi-project setup, ensure the project is
configured for multi-targeting to cover all desired
platforms (Android, iOS, macOS, and Windows).
For a single-project setup, the .NET MAUI
single-project approach naturally targets multiple
platforms under one project.

Create a New .NET MAUI
Project2

Move shared logic, XAML files, and resources from
your Xamarin.Forms app to the .NET MAUI project,
keeping the folder structure intact.
Migrate custom renderers to .NET MAUI handlers or
use built-in handlers as replacements.
Adjust platform-specific code by relocating it to the
respective “Platforms” directories within the .NET
MAUI project for a multi-project setup. In a
single-project setup, this involves integrating
platform-specific code within conditional
compilation blocks as necessary.

Migration of Code and
Resources3

Replace Xamarin.Forms namespaces with
Microsoft.Maui and Microsoft.Maui.Controls in your
migrated code.
Address any API changes between Xamarin.Forms
and .NET MAUI, consulting the o�cial
documentation for guidance on replacements and
new patterns.

Update Namespaces and APIs4

Confirm the compatibility of all external libraries or
NuGet packages with .NET 8. Replace or update
incompatible dependencies.

Upgrade or Replace
Dependencies5

3.5 Build, Test, and Troubleshoot
 The Final Migration Step for both Xamarin.Native and Xamarin.Forms Projects
This final segment emphasizes the importance of validating functionality, optimizing performance, and
resolving any emerging issues to guarantee a successful transition to .NET MAUI:

Build the .NET MAUI project to identify
compile-time errors. Use Visual Studio's error
messages to guide necessary code adjustments.

Extensively test the app on all target platforms to
ensure functionality, performance, and
appearance meet expectations.

Use debugging tools to identify and fix
runtime issues.

Utilize community forums, .NET MAUI
documentation, and GitHub for troubleshooting.

© Happiest Minds 2024

4
12

3.6 Key Considerations for Migration

Both migration paths require attention to .NET API
changes and updates in namespaces. Minor
adjustments may be needed to ensure compatibility
with the .NET ecosystem, whether moving to .NET
MAUI or .NET for Xamarin Native projects.

API and Namespace Changes

Libraries targeting .NET Standard are generally
compatible with .NET 8, simplifying the migration
process for both Xamarin.Forms and Xamarin
Native projects. This eases the update of
dependencies and integration of external libraries
into the new .NET project.

.NET Standard and
Library Compatibility

Using preview versions of libraries or recompiling
them against .NET 8 target frameworks may be
necessary for both migrations, especially for
libraries that haven't been updated to support .NET
8 o�cially.

Preview Features
and Recompilation

While more emphasized in the transition to .NET
MAUI due to its specific performance features,
optimizing application performance is a universal
consideration. This includes leveraging new .NET
performance improvements and best practices.

Performance Optimization

Migrating to .NET MAUI o�ers an opportunity to
enhance the app’s UI and UX through advanced
components and layout systems. While this is
specific to .NET MAUI, the underlying principle of
using migration as an opportunity to refine the app
applies broadly.

UI and UX Enhancements
(Primarily for .NET MAUI)

Understanding changes in app lifecycle
management is crucial for .NET MAUI migration. For
Xamarin Native to .NET migrations, understanding
.NET's lifecycle events and handling is also
beneficial, even though the context may di�er.

Lifecycle Management
(Primarily for .NET MAUI)

As you migrate, it's an opportune time to revise and enhance your codebase to leverage the new features and
performance improvements available in .NET 8, ensuring your application benefits from the latest
advancements in the .NET ecosystem.

Optimize Your Code to Take
Advantage of .NET 8 Features and Improvements

3.7 Additional Resources

Microsoft Documentation
Essential for all developers,
o�ering comprehensive
guides, API references, and
best practices for .NET
development and migration.

.NET Upgrade Assistant
Useful for automating
aspects of the migration
process. Its applicability can
vary, but it's a valuable tool
for simplifying migrations to
.NET MAUI and potentially for
some Xamarin Native to .NET
migrations.

Community Support
Engaging with the broader
.NET, Xamarin, and .NET
MAUI communities through
forums, GitHub, and social
media is invaluable for
accessing shared
knowledge, troubleshooting
tips, and migration advice.

© Happiest Minds 2024

5
13

6

A Note on Community and Support 4
The .NET MAUI ecosystem is supported by a vibrant community and robust backing from Microsoft,
creating a dynamic environment for both novice and seasoned developers to learn, create, and collaborate
on cross-platform applications. Here's an organized overview of the crucial resources and support
channels, guiding you from learning materials through community engagement, and ultimately, to o�cial
support avenues.

Learning Resources

Community Engagement

.NET MAUI on Microsoft Learn:

Dive into a comprehensive array of tutorials,
detailed guides, and reference materials on
Microsoft's o�cial learning platform, perfect for
developers of all skill levels. Access these
resources at Microsoft Learn - .NET MAUI.

Dev Blogs:

Keep up with the latest .NET MAUI insights, tips, and
news directly from the developers at Microsoft
Developer Blogs. Explore at DevBlogs - Microsoft.

.NET MAUI Community
Toolkit (GitHub):

This hub features a collection of
invaluable extensions and
controls created by the
community, fostering the
sharing of tools that enhance
.NET MAUI development.
Visit
GitHub - CommunityToolkit/Maui.

.NET MAUI Community
Stand-ups (YouTube):

Stay informed with the latest
developments and interact with
the .NET MAUI team during
their live-streamed sessions on
the .NET Foundation YouTube
channel.

Forums and
Social Media:

Engage with the .NET MAUI
community on platforms like
Stack Overflow (using the
".net-maui" tag), Reddit
(r/dotnetMAUI subreddit), and
Twitter (follow hashtags like
#dotnetMAUI) for a rich array of
discussions, advice, and
insights.

.NET MAUI
Documentation:

The definitive source for all
.NET MAUI technical
documentation, o�ering
exhaustive guides and how-tos.
Visit
Microsoft Docs - .NET MAUI.

GitHub Issues:

For bug reports and feature
requests, the .NET MAUI
GitHub issues page is the
designated platform. Report
and track issues at
GitHub - dotnet/maui/issues.

Microsoft Support for .NET
MAUI:

Gain access to o�cial support
for .NET MAUI through
Microsoft's support policy,
ensuring reliable assistance for
your development needs. Learn
more at Microsoft Support
Policy for .NET MAUI and the
comprehensive .NET Support
Policy.

Official Support

© Happiest Minds 2024 14

MAUI's Future Outlook
Advancing Cross-Platform Excellence

5

© Happiest Minds 2024

Criteria

Development
Language

C# and XAML, o�ering a robust, type-safe language with rich development
features, leveraging the extensive .NET ecosystem.

Platform
Coverage

Comprehensive, including iOS, Android, Windows, and Mac, with plans to expand
to the Web via Blazor integration, o�ering a truly unified approach.

Native
Performance

High, as it compiles to native code, ensuring optimal performance and access to
native APIs and features across all platforms.

UI Consistency &
Flexibility

High, as it directly uses native UI controls, ensuring consistency and flexibility in
design across platforms.

Development
Ecosystem

Rich, as it leverages the entire .NET ecosystem, including NuGet packages, and
Visual Studio, providing a comprehensive toolset for developers.

Community &
Support

Strong, as it is backed by Microsoft, ensuring long-term support, stability, and a
thriving community for resources and collaboration.

Future-Proof
High, with Microsoft's commitment, suggests continuous improvements and
additions, with a focus on integrating modern web technologies like Blazor for
web development.

Description

15

.NET MAUI's integration of Xamarin.Forms with the .NET ecosystem, o�ering a unified codebase for
Android, iOS, Windows, macOS, and potentially web platforms, sets a strong foundation for its future in
cross-platform development. Leveraged by the extensive .NET libraries and Visual Studio, it promises
streamlined development, high native performance, and robust Microsoft support. Coupled with a vibrant
developer community and alignment with technological trends, including web development potential via
Blazor, .NET MAUI is positioned to lead in creating modern, versatile applications. Its comprehensive
platform coverage and focus on performance and innovation make it a pivotal tool for developers
navigating the evolving digital landscape.

7

MAUI + Blazor
Why it Can Be a Game Changer

6
The integration of .NET MAUI with Blazor marks a significant advancement in cross-platform development,
o�ering a unified framework for building applications across iOS, Android, Windows, macOS, and the web.
This powerful combination leverages the strength of .NET MAUI and the flexibility of web technologies
through Blazor, simplifying the development process and expanding the potential for application projects.

Utilize C# across all platforms, streamlining the
development process and enabling greater
innovation without the overhead of multiple
languages.

Key Benefits

Unified
Development

Blazor's integration means web development
skills directly translate to building native
applications, lowering the barrier to entry and
enhancing productivity.

Seamless Transition
for Web Developers

The capability to share business logic and UI
components across platforms accelerates
development and simplifies updates, contributing
to a more e�cient workflow.

E�ciency in
Code Reuse

Visual Studio enhances developer e�ciency with
robust features for building, debugging, and
testing, encapsulating all necessary tools in one
environment.

Comprehensive
Tooling

.NET MAUI's native performance, bolstered by
Blazor and WebAssembly, ensures applications
are fast and responsive across all platforms.

Performance
and Reliability

Backed by Microsoft and an active community,
.NET MAUI and Blazor benefit from continuous
improvements and a rich pool of resources.

Community and
Microsoft Support

This combination facilitates the creation of
modern, consistent user experiences,
strengthening brand identity and user satisfaction
across various platforms.

Business and
Branding Advantage

Embracing .NET MAUI with Blazor doesn't just
represent a step forward in technology but a
comprehensive shift towards more
accessible, e�cient, and versatile application
development. This fusion positions
developers and businesses to e�ectively
address today's digital demands while being
well-prepared for future advancements.

© Happiest Minds 2024 16

17

About the Author

References
https://learn.microsoft.com/en-us/dotnet/maui/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/migration/?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/architecture/maui/

Conclusion7

8

In conclusion, transitioning from Xamarin to .NET
MAUI represents a significant leap forward in
cross-platform development, unifying and
enhancing the framework for building applications
across mobile, desktop, and beyond. This shift not
only preserves the value of existing Xamarin
investments but also smoothly integrates Xamarin
Forms and Native projects into the .NET
ecosystem's future.

The migration to .NET MAUI, while necessitating
adaptation to its architectural changes—such as
moving from custom renderers to handlers—o�ers

considerable advantages. Developers can expect
faster application startups, improved performance,
and broader platform compatibility, establishing
.NET MAUI as a cornerstone for future projects.

.NET MAUI provides developers with powerful
tools and capabilities to create highly performant,
functional, and maintainable applications. With the
backing of the .NET community and the assistance
of the .NET Upgrade Assistant, transitioning to .NET
MAUI is an insightful step to future-proof your
applications and fully leverage the .NET platform's
capabilities.

www.happiestminds.com

About Happiest Minds

Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables
digital transformation for enterprises and technology providers by delivering seamless
customer experiences, business efficiency and actionable insights. We do this by leveraging
a spectrum of disruptive technologies such as: artificial intelligence, blockchain, cloud, digital
process automation, internet of things, robotics/drones, security, virtual/ augmented
reality,etc. Positioned as ‘Born Digital . Born Agile’, our capabilities span Product & Digital
Engineering Services (PDES), Generative AI Business Services (GBS) and Infrastructure
Management & Security Services (IMSS). We deliver these services across industry sectors
such as automotive, BFSI, consumer packaged goods, e-commerce, EdTech, engineering
R&D, healthcare, hi-tech, manufacturing, retail, and travel/transportation/hospitality. The
company has been recognized for its excellence in Corporate Governance practices by
Golden Peacock and ICSI. A Great Place to Work Certified™ company, Happiest Minds is
headquartered in Bangalore, India with operations in the U.S., UK, Canada, Australia, and
Middle East.

Hariprasad C.R. Rao is a Senior Engineering Manager at Happiest Minds
Technologies, with around 18 years of experience specializing in digital solutions
strategies, architecture evaluation, and technology assessment for mobile platforms.
His expertise spans designing, architecting, and developing robust applications and
games for macOS, Android, and iOS platforms, leveraging both native and
cross-platform development tools, with a firm grasp on the application development
lifecycle.

Hari has a track record of leading projects that deliver scalable, resilient mobile
applications across diverse industries such as Education, Media, IoT, Healthcare,
Industrial, and Automotive. At Happiest Minds, for nearly 8 years, he has excelled in
transforming functional requirements into comprehensive mobile solutions, guiding
technical teams, and ensuring high-quality deliverables that enhance competitive
positions. His commitment to quality and innovation is evident in his hands-on
approach to product management, development, and the enforcement of sound
development practices.

https://www.happiestminds.com/
https://www.happiestminds.com/services/digital-transformation/
https://www.happiestminds.com/services/artificial-intelligence-cognitive-computing/
https://www.happiestminds.com/services/blockchain-solutions-services/
https://www.happiestminds.com/services/cloud-data-center-advisory-transformation/
https://www.happiestminds.com/services/internet-of-things/
https://www.happiestminds.com/services/it-security-services/
https://www.happiestminds.com/services/ar-vr-mr/

