
Productivity Improvement Tools
in Software Development
Productivity Improvement Tools
in Software Development

The rapid evolution of software development has significantly transformed the way teams collaborate
and deliver projects. However, traditional software development methods often encounter challenges
that a�ect productivity, including manual coding, ine�cient debugging, and time-consuming documen-
tation. These challenges not only slow down project delivery but also increase the likelihood of human
errors, leading to rework and additional costs.

To overcome these challenges, productivity improvement tools have been developed to assist soft-
ware engineers at various phases of the Software Development Life Cycle (SDLC). These tools aim to
streamline the development process, enhance collaboration, and reduce the time spent on repetitive
tasks.

This paper highlights the challenges faced in traditional software development, key productivity tools
evaluated by our team at and discusses how these tools can enhance e�ciency.

01
Productivity Improvement Tools for Software Development

Productivity Improvement Tools in Software Development

Challenges in Traditional Software Development

1. Manual Code Writing: Devel-
opers often spend significant time
writing repetitive code and adhering
to coding standards, leading to ine�-
ciencies and potential errors.

2. Design to Code Translation:
The manual translation of design
mock-ups into code is a time-con-
suming process that can create
inconsistencies between the design
and the actual implementation.

3. Code Documentation: Gen-
erating accurate and detailed docu-
mentation, such as code comments
and API documentation,

is frequently neglected or rushed,
leading to poor maintenance and
future scalability issues.

4. Complex Logic Understand-
ing: Understanding legacy code or
complex logic in existing projects
without clear visual representations
can be challenging and time-con-
suming.

5. Testing and Debugging:
Testing and debugging code to
ensure quality and functionality often
requires substantial manual inter-
vention, extending the overall time-
line for software delivery.

© Happiest Minds 2024

The Our team has evaluated several tools designed to address these productive challenges.
Mentioned below are the tools, their capabilities, and how they fit into the SDLC:

Continue AI o�ers real-time code improvement suggestions directly within the development environ-
ment. It focuses on enhancing code quality, providing recommendations on best practices, refactoring,
and security improvements.

Summary: Continue AI, evaluated as a VS Code extension, provides valuable assistance for explain-
ing and debugging complex code. It also enables users to generate code for specific tasks interac-
tively through its prompt box. As an open-source tool, Continue AI proves to be a practical asset for
daily development activities, o�ering useful features for streamlining coding tasks.

Recommended Scenarios:
• Routine Coding Tasks: Continue AI helps streamline day-to-day coding tasks like writing functions,
 handling syntax, and refactoring code for improved e�ciency.
• Debugging Large Codebases: In cases where debugging complex code is time-consuming,
 Continue AI can assist in finding potential errors and suggesting solutions more e�ciently.
• Enhancing Productivity in Maintenance: For projects in the maintenance phase, this tool
 significantly reduces the time spent on code enhancement, debugging, and optimization.

Benefits: By automating code completion, Continue enhances developer productivity by reducing the
time spent on repetitive coding and debugging tasks.
Best for: Continuous code optimization and maintenance.

• Supported Languages: VS Code, JetBrains (C#, Java, Python).
• SDLC Phase: Software development and maintenance.
• Use Cases: Provides auto-complete, reference and chat
 functions, code optimization, and debuggiassistance.
• E�ort Savings: 10-15% in daily development tasks.
• Security: Collects anonymous usage information for product
 improvement, with an opt-out option for telemetry.

02
Productivity Improvement Tools for Software Development

Productivity Improvement Tools

1. Continue (Open-Source AI Code Assistant)

GitHub Copilot is an AI-powered code completion tool that assists developers by suggesting real-time
code snippets, functions, and even entire lines of code. It integrates seamlessly into popular IDEs,
improving coding speed, reducing errors, and accelerating development workflows.

2. GitHub Copilot (AI Code Completion)

• Supported Languages: JavaScript, TypeScript, Python, Java, C#.
• SDLC Phase: Software development and testing.
• Use Cases: Provides real-time code suggestions, generates
 blocks of code, and helps with debugging.
• E�ort Savings: : 20% in development tasks.
• Security: Does not store code for future training unless opted in.

© Happiest Minds 2024 Disclaimer: All logos are the property of their respective owners

03
Productivity Improvement Tools for Software Development

Best for: Daily development tasks.

Recommended Scenarios:
• Real-time Code Suggestions: GitHub Copilot is ideal for developers working in languages such as
 JavaScript, Python, Java, C#, and others who need real-time code completion and suggestions.
• Rapid Prototyping: It can be particularly useful during the early stages of development allowing
 developers to quickly create prototypes or generate blocks of code to test functionality.
• Debugging and Optimization: Copilot helps with faster debugging by o�ering potential fixes and
 code optimizations.
• Complex Code Generation: When developers are dealing with frameworks or libraries, Copilot can
 suggest compatible code that fits the context, making it a great tool for both new and experienced

Codeium is an AI-based autocomplete tool that enhances developer productivity by suggesting code
snippets, libraries, and best practices. It helps reduce coding errors and speeds up the development
process by learning from a developer’s context.

Recommended Scenarios:
• Speeding Up Code Writing: Codeium excels at auto-completing lines of code, generating snippets,
 and optimizing code across various programming languages like JavaScript, TypeScript, Python, Java,
 and more.
• Project Development: For large development teams working on multiple features or modules,
 Codeium significantly reduces the time spent on boilerplate code writing, allowing developers to
 focus on business logic.

Benefits: Codeium increases e�ciency by providing developers with intelligent code completion and
ensuring that sensitive data remains secure.
Best for: AI-assisted code generation and optimization.

• Supported Languages: JavaScript, Python, Java, C#
• SDLC Phase: Software development and testing.
• Use Cases: O�ers code suggestions, auto-completes lines, and
 helps with debugging.
• E�ort Savings: 20% in development tasks.
• Security: Codeium ensures that code is not uploaded to external
 servers or used for training purposes.

3. Codeium (AI-Powered Code Completion)

Benefits: GitHub Copilot significantly accelerates development by providing context-aware code sug-
gestions, allowing developers to focus on more critical aspects of the code.

Summary: GitHub Copilot proves useful in accelerating development by auto-completing code snip-
pets and functions, reducing coding time in common scenarios. Its intelligent suggestions facilitate
faster iterations and help reduce errors, enabling developers to catch bugs earlier, potentially lower-
ing defects. Additionally, Copilot’s interactive chat window feature enhances coding by allowing
users to input commands directly, providing more engaging and responsive assistance.

© Happiest Minds 2024 Disclaimer: All logos are the property of their respective owners

04
Productivity Improvement Tools for Software Development

• Refactoring Code: It is e�ective in scenarios where you need to refactor code for better
 performance or readability, helping to keep the codebase clean and e�cient.

Summary: Codeium provides AI-driven code auto-completion that helps reduce the time spent on
routine coding tasks. It suggests optimized code patterns, highlights potential bugs early, and o�ers
interactive coding support through a chat-based prompt feature, making development faster and
more e�cient.

Code Parrot is an open-source AI model that provides natural language to code translation. It helps in
converting human-written descriptions into executable code, making it a valuable tool for rapid proto-
typing and automation.

• Supported Languages: Angular, React, Typescript, HTML, CSS
• SDLC Phase: Design to code.
• Use Cases: Generates frontend code from Figma or image files,
 facilitating faster UI development.
• E�ort Savings: 15-20% in UI development.
• Security: Does not trade user data but stores it for product
 improvements.

4. Code Parrot (UI Code Generation)

Recommended Scenarios:
• Figma to Code: When building a frontend from scratch, especially with existing UI/UX designs in
Figma, Code Parrot can quickly generate HTML, CSS, and initial React or Angular components. This is
helpful in scenarios where design mockups need to be translated into code rapidly.
• Rapid Prototyping for Frontend Development: If you have design files (either Figma or JPG images
of mockups), this tool can save e�ort during the initial stages of UI development.
• Component Reuse: In situations where the development team aims to reuse existing components
and adhere to coding standards, Code Parrot will fit perfectly by generating code that integrates seam-
lessly with the existing codebase.

Benefits: By automating the transition from design to code, Code Parrot reduces inconsistencies and
accelerates the development of user interfaces.
Best for: Frontend UI development from design to code.

Summary: Code Parrot, as an extension in VS Code, simplifies code generation from Figma files or
screenshots (JPG or PNG). It provides step-by-step instructions along with the code required to
create component files, HTML, and CSS. Outputs tend to be more precise when using image formats
like JPG or PNG compared to Figma files. Overall, it saves significant time by reducing manual
coding, and it supports interactive command input through a chat window, enhancing user control
and e�ciency in UI development.

© Happiest Minds 2024 Disclaimer: All logos are the property of their respective owners

0505

Mintlify automates the process of generating documentation directly from code. It helps maintain
high-quality, up-to-date documentation by analyzing the code and producing clear, concise documen-
tation aligned with industry standards.

Recommended Scenarios:
• Generating Docstrings: Mintlify is particularly beneficial for developers needing to generate doc
 strings for functions, classes, or methods across multiple programming languages like Python,
 JavaScript, TypeScript, Java, and C#.

Benefits: Mintlify helps maintain high-quality documentation, saving developers time and ensuring
better maintainability of the codebase.
Best for: Automating code documentation.

• Supported Languages: Python, JavaScript, Java, TypeScript, C#
• SDLC Phase: Code documentation.
• Use Cases: Automatically generates code documentation such as
 docstrings for classes and methods.
• E�ort Savings: 5% in documentation e�orts.
• Security: Uses customer data for research but allows data
 deletion requests.

Productivity Improvement Tools for Software Development

5. Mintlify (Automated Code Documentation)

Summary: Mintlify’s free version e�ectively generates accurate and detailed docstrings for code.
However, other features, like API documentation and GitHub integration, can be somewhat
challenging due to complex setup requirements, and these aspects lack advanced AI-driven support.

© Happiest Minds 2024 Disclaimer: All logos are the property of their respective owners

06
Productivity Improvement Tools for Software Development

CodeToFlow visually transforms complex codebases into flowcharts, helping developers and teams
understand code structures and logic. This tool aids in debugging and system design by providing a
clear visual representation of the code.

Summary: CodeToFlow is useful for generating AI-powered class diagrams and other UML diagrams
for individual class files, o�ering a visual approach to understanding complex code structures. A
limitation is that it focuses solely on individual class files, without support for creating diagrams at the
project level.

• Supported Languages: Python, C#, Java
• SDLC Phase: Low-level design.
• Use Cases: Visualizes code into flowcharts and diagrams, simplifying complex logic and aiding
 reverse engineering.
• E�ort Savings: 5-10% in design documentation e�orts.
• Security: No explicit information available.

Recommended Scenarios:
• Reverse Engineering: CodeToFlow is a great choice for teams looking to reverse engineer code to
understand existing logic, especially when diving into a new project with complex architectures.
• Complex Codebases: It simplifies the process of breaking down large, complex codebases by turn-
ing them into visual flowcharts, making it easier to see how di�erent classes or functions interact.
• Generating Design Documentation: This tool is helpful during the design phase for creating flow
diagrams, sequence diagrams, and class diagrams based on existing code, saving manual design
e�orts.

Benefits: This tool assists teams in quickly understanding existing codebases, facilitating design docu-
mentation and troubleshooting complex logic.
Best for: Visualizing code through flowcharts.

6. CodeToFlow (Code Visualization)

Kusho AI is an intelligent coding assistant that provides code suggestions, error identification, and
refactoring advice. It enhances developer productivity by improving code quality and reducing time
spent on repetitive tasks.

• SDLC Phase: Unit testing.
• Use Cases: Transforms API specifications into test suites, enabling
 quick unit testing for WebAPI endpoints.
• E�ort Savings: 10-15% in unit testing e�orts.
• Security: Collects data for improving its service, with privacy
 policies in place.

Benefits: KushoAI speeds up the API testing process, allowing developers to ensure quality without
integrating test code into CI/CD pipelines.

7. KushoAI (AI API Testing)

© Happiest Minds 2024 Disclaimer: All logos are the property of their respective owners

07
Productivity Improvement Tools for Software Development

Recommended Scenarios:
• Testing APIs Without Writing Unit Tests: Kusho AI is highly e�ective at quickly testing APIs without
 requiring developers to write unit test cases manually. It automates testing against API endpoints with
 out needing to generate code.
• Rapid API Validation: For teams working on back-end services or microservices, Kusho AI can
 validate multiple API endpoints delivering results quickly and saving the e�ort needed during the
 testing phase.
• Manual API Testing: During the API development phase, before integration into a CI/CD pipeline,
 Kusho AI serves as a valuable tool for manual API testing, ensuring that endpoints function
 as expected.

Best for: API testing and validation.

Summary: Kusho AI assists in creating unit test cases for given endpoints through its web-based
platform. It generates a comprehensive set of test scenarios, although it does not display the under-
lying test code. While Kusho AI lacks CI/CD integration, it remains a valuable tool for quickly testing
APIs that have been developed.

• Code Understanding &
 Reverse Engineering
 CodeToFlow

• API Testing:

• Daily Development:
 GitHub Copilot, Continue AI, Codeium

• Frontend UI Development:
 Code Parrot

• Documentation:
 Mintlify

Summary of Recommendations:

Overall, these AI tools enable development teams to focus on more complex, creative, and critical
aspects of their projects, while routine and repetitive tasks are automated. This results in faster devel-
opment cycles, reduced error rates, and improved productivity.

Here are some graphs demonstrating how AI tools help in saving e�ort during various stages of the
SDLC:

© Happiest Minds 2024

08
Productivity Improvement Tools for Software Development

Given below is a summary of these tools explaining the scenarios in which they can be used, their
licensing costs and the potential e�ort savings they o�er. Additionally, the summary addresses consid-
erations around security and privacy.

© Happiest Minds 2024

Tool
Name

SDLC Phase
where it can

be used

Scenarios/Use Case
where it can be used

Open
Source or
Licensed

License
Cost

Effort
Savings (%)

Security and Privacy

Continue Software
development
and
maintenance

Continue AI can be
used as an extension in
day-to-day
development tasks (tab
to auto complete,
reference and chat,
highlight and instruct,),
code optimisation,
debugging.

Open
Source
(Apache
2.0
license)

NA 10-15% of
effort
savings**

Continue collects and reports
anonymous usage information
to help us improve our product.
This data enables us to
understand user interactions
and optimize the user
experience effectively. You can
opt out of telemetry collection
at any time if you prefer not to
share your usage information.

https://docs.continue.dev/tele
metry
https://www.continue.dev/priv
acy

Code
Parrot

Design to
Code

It can be used in cases
where we want to
create UI from scratch
using either Figma files
or screenshot (jpg files)
of mock-ups.
It helps in generating
HTML, CSS, along with
initial React/Angular
components.

Its accuracy of code
generation using Figma
is 50-60% however the
accuracy grows to 80-
85% using jpg files. This
has been found while
carrying out the POCs.

Licensed $19 per
develop
er per
month

15-20% of
effort
saving in UI
developme
nt (HTML,
CSS,
Component
s)**

CodeParrot's privacy policy
states that it does not sell, rent,
or trade user data, including
code snippets and project
information, to third parties.
The platform uses collected
data primarily to improve and
develop its services. However,
the policy does not explicitly
state whether the code is used
for training purposes. It
mentions that data is stored to
enable product features and
provide access to past work, but
users can request the deletion
of their data.

https://codeparrot.ai/docs/priv
acy-policy

09
Productivity Improvement Tools for Software Development

 **The e�ort savings are based on the proof of concept (POC) carried out while evaluating the tool.
© Happiest Minds 2024

10
Productivity Improvement Tools for Software Development

Nitesh Chheda brings 16 years of IT experience with a strong
technical foundation in Microsoft technologies and Cloud. He has
extensive expertise in managing projects across various domains
using Agile and Waterfall methodologies. At Happiest Minds, Nitesh
serves as a Senior Project Manager in Product & Digital Engineering
Services and contributes to the Microsoft Practice vertical.

About the Author

Incorporating AI-powered productivity tools into the SDLC can significantly reduce manual e�ort,
mitigate human errors, and shorten project timelines. From code generation to documentation and test-
ing, these tools can address ine�ciencies in traditional software development by automating repetitive
tasks and enhancing collaboration. Our team’s evaluation demonstrates that integrating these tools can
lead to significant e�ort savings, improved code quality, and faster project delivery.

The continuous evolution of these tools, along with their focus on security and privacy, positions them
as valuable assets in driving productivity within software development teams. By adopting the right
combination of tools for di�erent SDLC phases, software development organizations can significantly
enhance their productivity and deliver high-quality software e�ciently.

Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables digital transformation for enter-

prises and technology providers by delivering seamless customer experiences, business e�ciency and actionable insights.

We do this by leveraging a spectrum of disruptive technologies such as: artificial intelligence, blockchain, cloud, digital

process automation, internet of things, robotics/drones, security, virtual/ augmented reality, etc. Positioned as ‘Born Digital.

Born Agile’, our capabilities span Product & Digital Engineering Services (PDES), Generative AI Business Services (GBS) and

Infrastructure Management & Security Services (IMSS). We deliver these services across industry groups: Banking, Financial

Services & Insurance (BFSI), EdTech, Healthcare & Life Sciences, Hi-Tech and Media & Entertainment, Industrial, Manufactur-

ing, Energy & Utilities, and Retail, CPG & Logistics. The company has been recognized for its excellence in Corporate Gover-

nance practices by Golden Peacock and ICSI.

A Great Place to Work Certified™ company, Happiest Minds is headquartered in Bengaluru, India with operations in the U.S.,

UK, Canada, Australia, and the Middle East.

Conclusion

About Happiest Minds Technologies

For more information, write to us at business@happiestminds.com

