
Decoding the Digital Nervous
System: Observability Unveiled

A digital nervous system is a framework that is aware of every intricate detail of a
software system. It is like a sixth sense for the system - alerting about the problems
before they happen, tracking every user interaction across dozens of services, and
helping us understand the root causes of problems.

We will dive deep into how observability works, detailing its pillars and architecture.
It is also crucial to understand the importance of observability.

Implementing observability in software systems directly provides the following
business benefits:

Improved Operational E�ciency :
Quickly identify issues, bottlenecks, and
ine�ciencies, leading to faster resolution
and smoother operations.

Reduced Downtime :
Proactively monitor system health to catch
problems early, minimizing disruptions and
maintaining business continuity.

Data-Driven Decision-Making :
Leverage insights from logs, metrics, and
traces to make informed business and
technical decisions that drive growth.

Faster Issue Resolution :
With detailed data on system performance,
teams can quickly pinpoint and address the
root cause of problems, reducing resolution
time.

Enhanced Customer Satisfaction :
Ensure high system reliability and
performance, resulting in better user
experiences and increased customer trust.

Custom Dashboards for Insights :
Create tailored dashboards that focus on
key performance indicators (KPIs), giving
stakeholders real-time visibility into system
health and business impact.

Resource Optimization :
Analyze system performance trends to
optimize resource usage, reducing waste
and improving cost e�ciency.

Increased Competitive Advantage :
Reliable, high-performing systems can improve
customer retention and di�erentiate the business
in a competitive market.

Continuous Improvement :
Use insights to identify patterns, refine
processes, and drive ongoing improvements
across the system and organization.

02 ©Happiest Minds

Despite its critical importance, observability remains an underappreciated tool in
software engineering. Several key challenges contribute to this undervaluation:

Shared Responsibility Ambiguity:
Observability is a collaborative e�ort
between development and DevOps
teams, yet there is often a lack of clear
delineation of roles and responsibilities.
This ambiguity can lead to gaps in
system monitoring and analysis.

Inherent Complexity : Observability
encompasses every component of a
software system, making it a multifaceted
and intricate discipline.

Perceived Value Limitation: Many
development teams struggle to recognize
the full value of observability, particularly
when production environments are not
directly managed by the development
team.

1 2

3

Let’s systematically unravel the complexities & challenges of observability by focusing on how
observability works under the hood.

03 ©Happiest Minds

Pillars of Observability

Observability is built on three fundamental pillars:

Logs: These are detailed records of events that happen in the system, like error
messages, operational sequences or status updates. An observability system can display
live stream of logs & historical logs based on retention policy.

1

04 ©Happiest Minds

Metrics: Quantitative measurements that track system performance, resource utilization,
and key operational indicators, enabling precise performance analysis. Examples: Server
CPU & memory utilization, system throughput, resource-consuming methods or classes
etc.

2

System Observability Dashboard Lost updated 2s agoLIVE

CPU Usage
97% 82%

Memory Usage
45%

Disk Usage
2.3MB/s

Network I/O

0%
-15m -7m now

50%

100%

0GB
-15m -7m now

16GB

32GB

Last reboot : Dec 8, 2024 14:30:4515d 7h 23m
System Uptime

05 ©Happiest Minds

Traces: In a distributed microservices architecture, a user journey often spans multiple
services. Traceability provides the sequence of services involved, along with key details such
as latency for each action, errors encountered, and the full transaction flow helping to
pinpoint performance bottlenecks and system failures.

Traceability tracks requests across distributed services using correlation IDs. Each service
interaction creates a span, forming a trace that shows the complete request journey and
timing.

3

Client API Gateway Auth Service Product Service Inventory Service Order Service Order Service

Client API Gateway Auth Service Product Service Inventory Service Order Service Order Service

GET/api/v1/products/
checkout

POST / auth /
validate

GET / inventory /
check

GET / products / {id}

200 OK
(Order Confirmation)

POST / orders / create

201 Created (Order ID)

200 OK
(JWT Valid)

200 OK (in stock)

Success

Insert Order

200 OK (Product Details)

t=0ms

 t=50ms
Span ID: span-001

 t=150ms
Span ID: span-002

 t=100ms
Span ID: span-003

Total Time: 575ms

t=200ms
Span ID:
span-004

t= 75ms
Span ID:
span-005

Each service adds:
-Correlation ID
-Parent Span ID
-Service Name
-Timestamp

06 ©Happiest Minds

Logs Metrics Traces

Application

Kibana

Logstash Node Exporter

/metrics

K85 Node

Prometheus UI

Time Series
 DB

Prometheus
 Server

ApplicationElasticsearch

Collector

 Database
e.g. cassandra UI

e.g. Grafana

Service B

Service A

Detailed
 Trace
(Async)

Trace via
Http
headers
(sync)

Observability Architecture
While logs, metrics, and traces might seem distinct in the observability landscape, they share a
remarkable architectural DNA that transforms them from isolated data points into a
comprehensive system narrative.
It is essential to understand 3 fundamental concepts that form the foundation of observability:
Instrumentation, Scraping, and Visualization.

Having outlined the pillars and key concepts of observability, let's examine its architecture.

Instrumentation: This refers to adding code or
tools to the application to collect data on its
behavior, such as performance metrics, logs,
and traces. It’s like setting up sensors in the
system that monitor and report its activity.

Scraping: : Scraping is the process of
collecting data from the various services or
applications that have been instrumented.
Tools like Prometheus "scrape" data at
regular intervals, pulling metrics from the
services so that they can be analyzed.

Visualization: This is the process of
displaying the collected data in a user-friendly
way. Visualization tools, like Grafana, allow
engineers to create dashboards that turn raw
data into meaningful charts, graphs, and
alerts, providing clear insights into system
performance and health.

07 ©Happiest Minds

Logs

Applications are responsible to instrument logs by adding logging code into source code to
record runtime information. This is done with the help of libraries that application code can
extend e.g. Opentelemetry (multiple languages), Winston (Node.js), Logback (Java), Structlog
(Python), ZAP (Go) etc.

Metrics

Prometheus is the most widely used tool for metric & alert management. We use Prometheus
to understand how metrics fit into observability.

The metric data is scraped by a Prometheus server by calling the API endpoint.

Alerting rules can be configured in the Prometheus server based on threshold values. The
Prometheus server uses alert managers to send alerts via emails and messages.

The scraped metric data is sent to a time series database for storage by the Prometheus
server. The Prometheus server exposes APIs for metrics to be queried by a visualization tool.

Visualization tools like Prometheus UI, Grafana can call the APIs or directly query the
database using query language PromQL to visualize the metric data meaningfully.

The libraries and exporters expose an API endpoint (/metrics) to provide the metric data.

Metrics are utilization & performance data of the server/node on which the applications are
running. These metrics are generally instrumented through an agent or sidecar service
running on the same server/node. Occasionally the application can also generate its metrics
e.g. threads, response time, heap memory usage by adding libraries from Prometheus.

The logs are then scraped by collection & processing tools e.g. Fluentbit, Logstash, Promtail.

The data collection tools then send these processed logs to storage e.g. Elasticsearch,
OpenSearch, Loki.

The stored log data can then be queried and visualized in the form of meaningful dashboards
by a tool e.g. Grafana, Datadog, Elasticsearch, OpenSearch.

Traces

Traces are applicable in a distributed architecture with microservices. Each microservice is
responsible for instrumenting trace data (span ID, correlation ID, etc.) by adding
dependencies in the application e.g. Opentelemetry, Zipkin. Other tools like Jeager require
an agent to be deployed as a sidecar alongside the application to instrument tracing data.

Traces are simultaneously scraped to two destinations immediate microservice in the flow &
centralized trace collector. Minimal trace information i.e. Span is sent to immediate
microservice via HTTP header synchronously along with the request details. Detailed trace
data is sent to trace collector e.g. Jeager collector or Zipkin collector asynchronously. This is
done to minimize performance impact on the source microservices. The trace data is saved in
a database like Cassandra / Elasticsearch etc.

UI tools like Grafana, Jeager UI visualize the traces by querying the trace data from collector.

08 ©Happiest Minds

Essential Building Blocks

 Developers:
Code-level instrumentation
 trace/log quality

 Devops:
Infrastructure setup
 data collection
visualization platforms

Responsibility Boundaries
Observability is a shared responsibility between Developers & DevOps engineers. Shared
responsibility with unclear boundaries can lead to conflicts and under-performing systems. Let’s
define the boundary of responsibility:

Bringing It All Together
Observability requires the right tools and architecture to function e�ectively.

Core Components

Development teams typically own the instrumentation, embedding observability hooks within the
application code, defining meaningful traces, and ensuring log richness. They're responsible for
creating high-quality, context-aware telemetry that captures application-specific behaviors.

DevOps engineers, conversely, focus on the observability infrastructure & visualization. Their
domain includes setting up collection tools like Prometheus, configuring log stores such as
Elasticsearch, designing dashboards, and managing centralized tracing systems. They ensure the
observability pipeline is robust, scalable, and provides comprehensive system insights.

The value of observability is realised at the intersection of the two domains.

Collection Tools: Your system's sensors (Prometheus, Fluentd, Jaeger, OpenTelemetry
Collector)

Storage Solutions: Your system's memory (Elasticsearch, Loki, Tempo, Opensearch)

Visualization: Your system's dashboard (Grafana, Kibana, Prometheus UI)

Perfect for Kubernetes environments Cost-e�ective monitoring solution

Quick to set up and maintain

 Popular Stacks

For Startups & Small Teams

PLG Stack (Prometheus, Loki, Grafana)

Getting started with Grafana & Prometheus

09 ©Happiest Minds

Vendor-neutral solution Future-proof architecture Strong signal correlation

For Growing Organizations

OTLP Stack (OpenTelemetry, Tempo, Loki, Prometheus)

Great for scaling teams Getting started with Opentelemetry

Powerful search capabilities Extensive community support

Rich ecosystem of plugins

For Medium to Large Organizations

ELK Stack (Elasticsearch, Logstash, Kibana)

Learn more about ELK Stack

Full observability out of the box

AI-powered insights

Minimal setup required

For Enterprise & Complex Systems

Enterprise Solutions (Datadog, Dynatrace)

Datadog documentation

10 ©Happiest Minds

Next Steps

Start with basic metrics
collection using Prometheus

Add structured logging with
ELK, PLG, or OTLP stack

Implement distributed tracing
as your system grows

Build meaningful dashboards
to visualize your data

11

Quick Start Guide

Remember: Good observability is a journey, not a destination. Start with what you need most and
grow your observability practice alongside your system.

Explore our
recommended
tools'
documentation

Join observability
communities on
Slack or Discord

Start small,
measure what
matters, and
scale as
needed

©Happiest Minds

Happiest Minds Technologies Limited (NSE: HAPPSTMNDS), a Mindful IT Company, enables digital
transformation for enterprises and technology providers by delivering seamless customer experiences,
business e�ciency and actionable insights. We do this by leveraging a spectrum of disruptive technologies
such as: artificial intelligence, blockchain, cloud, digital process automation, internet of
things,robotics/drones, security, virtual/ augmented reality, etc. Positioned as ‘Born Digital . Born Agile’, our
capabilities span Product & Digital Engineering Services (PDES), Generative AI Business Services (GBS) and
Infrastructure Management & Security Services (IMSS). We deliver these services across industry groups:
Banking, Financial Services & Insurance (BFSI), EdTech, Healthcare & Life Sciences, Hi-Tech and Media &
Entertainment, Industrial, Manufacturing, Energy & Utilities, and Retail, CPG & Logistics. The company has
been recognized for its excellence in Corporate Governance practices by Golden Peacock and ICSI. A Great
Place to Work Certified™ company, Happiest Minds is headquartered in Bengaluru, India with operations in
the U.S., UK, Canada, Australia, and the Middle East.

Tarique Ansari is an Architect, PDES at Happiest Minds with
over 14 years of experience in architecting, designing, and
delivering scalable, high-performance software solutions.
He has proven expertise in leading cross-functional teams,
particularly in the E-Commerce domain, while implementing
innovative technologies and methodologies. Tarique is
adept at leveraging cloud platforms, microservices, and
agile practices to drive operational e�ciency and business
success.

About the Author

For more information, write to us at business@happiestminds.com

www.happiestminds.com

About Happiest Minds

